Spelling suggestions: "subject:"1mages médicales"" "subject:"demages médicales""
1 |
Segmentation d'images médicales tridimensionnelles basée sur une modélisation continue du volumeMarque, Isabelle 20 December 1990 (has links) (PDF)
.
|
2 |
Recalage d'images médicales par inférence statistiqueRoche, Alexis 02 February 2001 (has links) (PDF)
Le recalage est un problème classique en vision par ordinateur qui intervient notamment dans de nombreuses tâches d'analyse des images médicales. Le principe général d'un algorithme de recalage est d'optimiser un critère mesurant la correspondance entre deux images sur un espace prédéterminé de transformations spatiales. Le choix du critère, appelé mesure de similarité, conditionne de façon déterminante la précision et la robustesse de l'algorithme. Il existe aujourd'hui un dictionnaire de mesures de similarité dans lequel le concepteur d'un programme choisit, en se fiant le plus souvent à son intuition et à son expérience, celle qui est la mieux adaptée à son problème particulier. Afin de rendre plus objectif un tel choix, cette thèse propose une méthodologie pour construire des mesures de similarité en fonction de modèles probabilistes de formation d'images. En considérant d'abord un modèle simple de liaison fonctionnelle entre les intensités des images, nous définissons une nouvelle classe de mesures de similarité liée à la notion de rapport de corrélation. Nous montrons expérimentalement que cette classe est adaptée au recalage rigide multimodal d'images acquises par résonance magnétique (IRM), scanner et scintigraphie. La méthode du rapport de corrélation est ensuite étendue au cas du recalage multimodal non-rigide au prix de quelques adaptations pratiques. Enfin, nous formulons le recalage d'images comme un problème général d'estimation par maximum de vraisemblance, ce qui nous permet de prendre en compte des modèles de dépendance inter-images plus complexes que des modèles fonctionnels. Cette approche est appliquée au recalage rigide d'images ultrasonores 3D et IRM.
|
3 |
Recalage et analyse d'un couple d'images : application aux mammographiesBoucher, Arnaud 10 January 2013 (has links) (PDF)
Dans le monde de la recherche, l'analyse du signal et plus particulièrement d'image, est un domaine très actif, de par la variété des applications existantes, avec des problématiques telles que la compression de données, la vidéo-surveillance ou encore l'analyse d'images médicales pour ne prendre que quelques exemples. Le mémoire s'inscrit dans ce dernier domaine particulièrement actif. Le nombre d'appareils d'acquisition existant ainsi que le nombre de clichés réalisés, entraînent la production d'une masse importante d'informations à traiter par les praticiens. Ces derniers peuvent aujourd'hui être assistés par l'outil informatique. Dans cette thèse, l'objectif est l'élaboration d'un système d'aide au diagnostic, fondé sur l'analyse conjointe, et donc la comparaison d'images médicales. Notre approche permet de détecter des évolutions, ou des tissus aberrants dans un ensemble donné, plutôt que de tenter de caractériser, avec un très fort a priori, le type de tissu cherché.Cette problématique permet d'appréhender un aspect de l'analyse du dossier médical d'un patient effectuée par les experts qui est l'étude d'un dossier à travers le suivi des évolutions. Cette tâche n'est pas aisée à automatiser. L'œil humain effectue quasi-automatiquement des traitements qu'il faut reproduire. Avant de comparer des régions présentes sur deux images, il faut déterminer où se situent ces zones dans les clichés. Toute comparaison automatisée de signaux nécessite une phase de recalage, un alignement des composantes présentes sur les clichés afin qu'elles occupent la même position sur les deux images. Cette opération ne permet pas, dans le cadre d'images médicales, d'obtenir un alignement parfait des tissus en tous points, elle ne peut que minimiser les écarts entre tissus. La projection d'une réalité 3D sur une image 2D entraîne des différences liées à l'orientation de la prise de vue, et ne permet pas d'analyser une paire de clichés par une simple différence entre images. Différentes structurations des clichés ainsi que différents champs de déformation sont ici élaborés afin de recaler les images de manière efficace.Après avoir minimisé les différences entre les positions sur les clichés, l'analyse de l'évolution des tissus n'est pas menée au niveau des pixels, mais à celui des tissus eux-mêmes, comme le ferait un praticien. Afin de traiter les clichés en suivant cette logique, les images numériques sont réinterprétées, non plus en pixels de différentes luminosités, mais en motifs représentatifs de l'ensemble de l'image, permettant une nouvelle décomposition des clichés, une décomposition parcimonieuse. L'atout d'une telle représentation est qu'elle permet de mettre en lumière un autre aspect du signal, et d'analyser sous un angle nouveau, les informations nécessaires à l'aide au diagnostic.Cette thèse a été effectuée au sein du laboratoire LIPADE de l'Université Paris Descartes (équipe SIP, spécialisée en analyse d'images) en collaboration avec la Société Fenics (concepteur de stations d'aide au diagnostic pour l'analyse de mammographies) dans le cadre d'un contrat Cifre.
|
4 |
Quantification vectorielle algébrique : un outil performant pour la compression et le tatouage d'images fixesMoureaux, Jean-Marie 10 December 2007 (has links) (PDF)
Ce manuscrit décrit douze ans d'activités de recherche au Centre de Recherche en Automatique de Nancy dans le domaine de la compression d'images (grand public mais aussi médicales), ainsi que dans celui du tatouage d'images dans un contexte de compression.<br />Nous avons mis l'accent sur l'étape de quantification de la chaîne de compression pour laquelle nous avons proposé une méthode dite de « quantification vectorielle algébrique avec zone morte »<br />(QVAZM) associée à une analyse multirésolution par ondelettes, permettant d'améliorer sensiblement, par rapport au nouveau standard JPEG2000 ainsi qu'à l'algorithme de référence SPIHT, les performances en termes de compromis débit-distorsion, et ainsi la qualité visuelle de l'image reconstruite.<br />Nous avons travaillé sur trois points essentiels et proposé à chaque fois des solutions afin de rendre l'utilisation de la QVAZM réaliste dans une chaîne de compression : l'indexage des vecteurs du dictionnaire, le réglage des paramètres du dictionnaire (facteur d'échelle et zone morte) et l'allocation des ressources binaires.<br />La contribution majeure de nos travaux dans le domaine de l'imagerie médicale 3D a consisté à tenter d'ouvrir une voie à la compression avec perte, encore inenvisageable il y a quelques années pour des raisons évidentes de diagnostic. Nous avons pour cela étendu avec succès notre algorithme<br />QVAZM au cas des images médicales volumiques. Parallèlement à ces travaux, nous avons étudié l'impact de la compression avec perte sur certaines applications de traitement d'images médicales, en particulier sur un outil d'aide à la détection de nodules pulmonaires pour lequel nous avons pu montrer une robustesse à la compression avec perte, même à fort taux de compression (jusqu'à 96 :1).<br />Enfin, la contribution principale de nos travaux dans le domaine du tatouage concerne le développement d'approches combinées compression/tatouage et ont abouti à la proposition de deux méthodes de tatouage reposant sur la QVAZM, associée à une analyse multirésolution par transformée en ondelettes. Elles sont particulièrement attractives pour les applications où la compression constitue la principale attaque (ou le principal traitement).
|
5 |
De la segmentation au moyen de graphes d’images de muscles striés squelettiques acquises par RMN / Graph- based segmentation of skeletal striated muscles in NMR imagesBaudin, Pierre-Yves 23 May 2013 (has links)
La segmentation d’images anatomiques de muscles striés squelettiques acquises par résonance magnétique nucléaire (IRM) présente un grand intérêt pour l’étude des myopathies. Elle est souvent un préalable nécessaire pour l’étude les mécanismes d’une maladie, ou pour le suivi thérapeutique des patients. Cependant, le détourage manuel des muscles est un travail long et fastidieux, au point de freiner les recherches cliniques qui en dépendent. Il est donc nécessaire d’automatiser cette étape. Les méthodes de segmentation automatique se basent en général sur les différences d’aspect visuel des objets à séparer et sur une détection précise des contours ou de points de repère anatomiques pertinents. L’IRM du muscle ne permettant aucune de ces approches, la segmentation automatique représente un défi de taille pour les chercheurs. Dans ce rapport de thèse, nous présentons plusieurs méthodes de segmentation d’images de muscles, toutes en rapport avec l’algorithme dit du marcheur aléatoire (MA). L’algorithme du MA, qui utilise une représentation en graphe de l’image, est connu pour être robuste dans les cas où les contours des objets sont manquants ou incomplets et pour son optimisation numérique rapide et globale. Dans sa version initiale, l’utilisateur doit d’abord segmenter de petites portions de chaque région de l’image, appelées graines, avant de lancer l’algorithme pour compléter la segmentation. Notre première contribution au domaine est un algorithme permettant de générer et d’étiqueter automatiquement toutes les graines nécessaires à la segmentation. Cette approche utilise une formulation en champs aléatoires de Markov, intégrant une connaissance à priori de l’anatomie et une détection préalable des contours entre des paires de graines. Une deuxième contribution vise à incorporer directement la connaissance à priori de la forme des muscles à la méthode du MA. Cette approche conserve l’interprétation probabiliste de l’algorithme original, ce qui permet de générer une segmentation en résolvant numériquement un grand système linéaire creux. Nous proposons comme dernière contribution un cadre d’apprentissage pour l’estimation du jeu de paramètres optimaux régulant l’influence du terme de contraste de l’algorithme du MA ainsi que des différents modèles de connaissance à priori. La principale difficulté est que les données d’apprentissage ne sont pas entièrement supervisées. En effet, l’utilisateur ne peut fournir qu’une segmentation déterministe de l’image, et non une segmentation probabiliste comme en produit l’algorithme du MA. Cela nous amène à faire de la segmentation probabiliste optimale une variable latente, et ainsi à formuler le problème d’estimation sous forme d’une machine à vecteurs de support latents (latent SVM). Toutes les méthodes proposées sont testées et validées sur des volumes de muscles squelettiques acquis par IRM dans un cadre clinique. / Segmentation of magnetic resonance images (MRI) of skeletal striated muscles is of crucial interest when studying myopathies. Diseases understanding, therapeutic followups of patients, etc. rely on discriminating the muscles in MRI anatomical images. However, delineating the muscle contours manually is an extremely long and tedious task, and thus often a bottleneck in clinical research. Typical automatic segmentation methods rely on finding discriminative visual properties between objects of interest, accurate contour detection or clinically interesting anatomical points. Skeletal muscles show none of these features in MRI, making automatic segmentation a challenging problem. In spite of recent advances on segmentation methods, their application in clinical settings is difficult, and most of the times, manual segmentation and correction is still the only option. In this thesis, we propose several approaches for segmenting skeletal muscles automatically in MRI, all related to the popular graph-based Random Walker (RW) segmentation algorithm. The strength of the RW method relies on its robustness in the case of weak contours and its fast and global optimization. Originally, the RW algorithm was developed for interactive segmentation: the user had to pre-segment small regions of the image – called seeds – before running the algorithm which would then complete the segmentation. Our first contribution is a method for automatically generating and labeling all the appropriate seeds, based on a Markov Random Fields formulation integrating prior knowledge of the relative positions, and prior detection of contours between pairs of seeds. A second contribution amounts to incorporating prior knowledge of the shape directly into the RW framework. Such formulation retains the probabilistic interpretation of the RW algorithm and thus allows to compute the segmentation by solving a large but simple sparse linear system, like in the original method. In a third contribution, we propose to develop a learning framework to estimate the optimal set of parameters for balancing the contrast term of the RW algorithm and the different existing prior models. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the medical images, instead of the optimal probabilistic segmentation, which corresponds to the desired output of the RW algorithm. We overcome this challenge by treating the optimal probabilistic segmentation as a latent variable. This allows us to employ the latent Support Vector Machine (latent SVM) formulation for parameter estimation. All proposed methods are tested and validated on real clinical datasets of MRI volumes of lower limbs.
|
6 |
Segmentation d'image médicales volumiques à l'aide de maillages déformables contraintsMontagnat, Johan 06 September 1996 (has links) (PDF)
La segmentation d'organes abdominaux dans des images médicales volumiques est rendue difficile par le bruit et le faible contraste de ces images. Les techniques de segmentation classiques à base d'extraction de contours ou de seuillage donnent des résultats insuffisants. Dans ce rapport, nous utilisons des modèles déformables pour segmenter les images. En introduisant un modèle de l'organe voulu dans le processus de segmentation, nous bénéficions d'une connaissance a priori de la forme à retrouver. Nous utilisons des images de contour bruitées pour déformer localement le modèle. Les données de contours étant incomplètes, il est nécessaire de contraindre le modèle pour qu'il se déforme régulièrement. Nos maillages simplexes bénéficient d'un mécanisme de mémoire de forme agissant de façon régularisante sur les déformations. Nous utilisons des transformations globales pour disposer davantage de contraintes. Un modèle hybride fournit un compromis entre complexité de calcul des transformations globales et nombre de degrés de liberté du modèle. Nous étudions également l'utilisation d'un ensemble d'apprentissage pour construire un modèle plus robuste tirant parti de l'information statistique des déformations possibles. L'information statistique peut être utilisée pour contraindre d'avantage les déformations ou pour paramétrer de façon plus fine le processus de déformation.
|
7 |
Recalage et analyse d’un couple d’images : application aux mammographies / Registration and analysis of a pair of images : application to mammographyBoucher, Arnaud 10 January 2013 (has links)
Dans le monde de la recherche, l’analyse du signal et plus particulièrement d’image, est un domaine très actif, de par la variété des applications existantes, avec des problématiques telles que la compression de données, la vidéo-surveillance ou encore l’analyse d’images médicales pour ne prendre que quelques exemples. Le mémoire s’inscrit dans ce dernier domaine particulièrement actif. Le nombre d’appareils d’acquisition existant ainsi que le nombre de clichés réalisés, entraînent la production d’une masse importante d’informations à traiter par les praticiens. Ces derniers peuvent aujourd’hui être assistés par l’outil informatique. Dans cette thèse, l’objectif est l’élaboration d’un système d’aide au diagnostic, fondé sur l’analyse conjointe, et donc la comparaison d’images médicales. Notre approche permet de détecter des évolutions, ou des tissus aberrants dans un ensemble donné, plutôt que de tenter de caractériser, avec un très fort a priori, le type de tissu cherché.Cette problématique permet d’appréhender un aspect de l’analyse du dossier médical d’un patient effectuée par les experts qui est l’étude d’un dossier à travers le suivi des évolutions. Cette tâche n’est pas aisée à automatiser. L’œil humain effectue quasi-automatiquement des traitements qu’il faut reproduire. Avant de comparer des régions présentes sur deux images, il faut déterminer où se situent ces zones dans les clichés. Toute comparaison automatisée de signaux nécessite une phase de recalage, un alignement des composantes présentes sur les clichés afin qu’elles occupent la même position sur les deux images. Cette opération ne permet pas, dans le cadre d’images médicales, d’obtenir un alignement parfait des tissus en tous points, elle ne peut que minimiser les écarts entre tissus. La projection d’une réalité 3D sur une image 2D entraîne des différences liées à l’orientation de la prise de vue, et ne permet pas d’analyser une paire de clichés par une simple différence entre images. Différentes structurations des clichés ainsi que différents champs de déformation sont ici élaborés afin de recaler les images de manière efficace.Après avoir minimisé les différences entre les positions sur les clichés, l’analyse de l’évolution des tissus n’est pas menée au niveau des pixels, mais à celui des tissus eux-mêmes, comme le ferait un praticien. Afin de traiter les clichés en suivant cette logique, les images numériques sont réinterprétées, non plus en pixels de différentes luminosités, mais en motifs représentatifs de l’ensemble de l’image, permettant une nouvelle décomposition des clichés, une décomposition parcimonieuse. L’atout d’une telle représentation est qu’elle permet de mettre en lumière un autre aspect du signal, et d’analyser sous un angle nouveau, les informations nécessaires à l’aide au diagnostic.Cette thèse a été effectuée au sein du laboratoire LIPADE de l’Université Paris Descartes (équipe SIP, spécialisée en analyse d’images) en collaboration avec la Société Fenics (concepteur de stations d’aide au diagnostic pour l’analyse de mammographies) dans le cadre d’un contrat Cifre. / In the scientific world, signal analysis and especially image analysis is a very active area, due to the variety of existing applications, with issues such as file compression, video surveillance or medical image analysis. This last area is particularly active. The number of existing devices and the number of pictures taken, cause the production of a large amount of information to be processed by practitioners. They can now be assisted by computers.In this thesis, the problem addressed is the development of a computer diagnostic aided system based on conjoint analysis, and therefore on the comparison of medical images. This approach allows to look for evolutions or aberrant tissues in a given set, rather than attempting to characterize, with a strong a priori, the type of fabric sought.This problem allows to apprehend an aspect of the analysis of medical file performed by experts which is the study of a case through the comparison of evolutions.This task is not easy to automate. The human eye performs quasi-automatically treatments that we need to replicate.Before comparing some region on the two images, we need to determine where this area is located on both pictures. Any automated comparison of signals requires a registration phase, an alignment of components present on the pictures, so that they occupy the same space on the two images. Although the characteristics of the processed images allow the development of a smart registration, the projection of a 3D reality onto a 2D image causes differences due to the orientation of the tissues observed, and will not allow to analyze a pair of shots with a simple difference between images. Different structuring of the pictures and different deformation fields are developed here to efficiently address the registration problem.After having minimized the differences on the pictures, the analysis of tissues evolution is not performed at pixels level, but the tissues themselves, as will an expert. To process the images in this logic, they will be reinterpreted, not as pixels of different brightness, but as patterns representative of the entire image, enabling a new decomposition of the pictures. The advantage of such a representation is that it allows to highlight another aspect of the signal, and analyze under a new perspective the information necessary to the diagnosis aid.This thesis has been carried out in the LIPADE laboratory of University Paris Descartes (SIP team, specialized in image analysis) and in collaboration with the Society Fenics (designer of diagnosis aid stations in the analysis of mammograms) under a Cifre convention. The convergence of the research fields of those teams led to the development of this document.
|
8 |
Détection et quantification automatiques de processus évolutifs dans des images médicales tridimensionnelles : application à la sclérose en plaquesRey, David 23 October 2002 (has links) (PDF)
L'étude des processus évoluant au cours du temps, comme les lésions de sclérose en plaques, peut dans certains cas être une aide considérable au diagnostic. Elle peut aussi servir au suivi d'un patient pour surveiller l'évolution de sa pathologie ou pour étudier les effets d'un nouveau traitement. Notre travail a tout d'abord consisté à choisir et à appliquer des prétraitements sur des séries d'images issues de l'imagerie par résonance magnétique (IRM) de patients atteints de sclérose en plaques ; ceci est nécessaire lorsqu'on veut mener une analyse temporelle automatique. Nous avons ensuite pu développer des méthodes de détection et de quantification des zones évolutives dans des ces images. Une première étude repose sur la comparaison de deux images en utilisant un champ de déplacements apparents d'une image vers l'autre. Ce champ de vecteurs peut être analysé par le biais d'opérateurs différentiels tels que le jacobien. Il est également possible d'extraire une segmentation des régions évolutives en 3D+t avec une telle analyse. Avec cette approche, on suppose que chaque point a une intensité fixe, et qu'il a un mouvement apparent. Une seconde étude consiste à mener une analyse statistique rétrospective sur une série complète d'images (typiquement plus de dix), en s'appuyant sur un modèle paramétrique de zone évolutive. Dans notre cas, les points dont la variation temporelle de l'intensité est significativement due à une lésion sont détectés. Les méthodes statistiques utilisées permettent de prendre en compte la cohérence spatiale des images. Pour cette seconde approche, on suppose que chaque point est immobile et que son intensité varie au cours du temps. Ces travaux ont été réalisés avec plusieurs partenaires cliniques afin de mener une étude expérimentale de nos algorithmes sous le contrôle d'experts médicaux, mais aussi d'entamer un travail de validation clinique.
|
9 |
De la segmentation au moyen de graphes d'images de muscles striés squelettiques acquises par RMNBaudin, Pierre-Yves 23 May 2013 (has links) (PDF)
La segmentation d'images anatomiques de muscles striés squelettiques acquises par résonance magnétique nucléaire (IRM) présente un grand intérêt pour l'étude des myopathies. Elle est souvent un préalable nécessaire pour l'étude les mécanismes d'une maladie, ou pour le suivi thérapeutique des patients. Cependant, le détourage manuel des muscles est un travail long et fastidieux, au point de freiner les recherches cliniques qui en dépendent. Il est donc nécessaire d'automatiser cette étape. Les méthodes de segmentation automatique se basent en général sur les différences d'aspect visuel des objets à séparer et sur une détection précise des contours ou de points de repère anatomiques pertinents. L'IRM du muscle ne permettant aucune de ces approches, la segmentation automatique représente un défi de taille pour les chercheurs. Dans ce rapport de thèse, nous présentons plusieurs méthodes de segmentation d'images de muscles, toutes en rapport avec l'algorithme dit du marcheur aléatoire (MA). L'algorithme du MA, qui utilise une représentation en graphe de l'image, est connu pour être robuste dans les cas où les contours des objets sont manquants ou incomplets et pour son optimisation numérique rapide et globale. Dans sa version initiale, l'utilisateur doit d'abord segmenter de petites portions de chaque région de l'image, appelées graines, avant de lancer l'algorithme pour compléter la segmentation. Notre première contribution au domaine est un algorithme permettant de générer et d'étiqueter automatiquement toutes les graines nécessaires à la segmentation. Cette approche utilise une formulation en champs aléatoires de Markov, intégrant une connaissance à priori de l'anatomie et une détection préalable des contours entre des paires de graines. Une deuxième contribution vise à incorporer directement la connaissance à priori de la forme des muscles à la méthode du MA. Cette approche conserve l'interprétation probabiliste de l'algorithme original, ce qui permet de générer une segmentation en résolvant numériquement un grand système linéaire creux. Nous proposons comme dernière contribution un cadre d'apprentissage pour l'estimation du jeu de paramètres optimaux régulant l'influence du terme de contraste de l'algorithme du MA ainsi que des différents modèles de connaissance à priori. La principale difficulté est que les données d'apprentissage ne sont pas entièrement supervisées. En effet, l'utilisateur ne peut fournir qu'une segmentation déterministe de l'image, et non une segmentation probabiliste comme en produit l'algorithme du MA. Cela nous amène à faire de la segmentation probabiliste optimale une variable latente, et ainsi à formuler le problème d'estimation sous forme d'une machine à vecteurs de support latents (latent SVM). Toutes les méthodes proposées sont testées et validées sur des volumes de muscles squelettiques acquis par IRM dans un cadre clinique.
|
10 |
Apprentissage automatique pour simplifier l’utilisation de banques d’images cardiaques / Machine Learning for Simplifying the Use of Cardiac Image DatabasesMargeta, Ján 14 December 2015 (has links)
L'explosion récente de données d'imagerie cardiaque a été phénoménale. L'utilisation intelligente des grandes bases de données annotées pourrait constituer une aide précieuse au diagnostic et à la planification de thérapie. En plus des défis inhérents à la grande taille de ces banques de données, elles sont difficilement utilisables en l'état. Les données ne sont pas structurées, le contenu des images est variable et mal indexé, et les métadonnées ne sont pas standardisées. L'objectif de cette thèse est donc le traitement, l'analyse et l'interprétation automatique de ces bases de données afin de faciliter leur utilisation par les spécialistes de cardiologie. Dans ce but, la thèse explore les outils d'apprentissage automatique supervisé, ce qui aide à exploiter ces grandes quantités d'images cardiaques et trouver de meilleures représentations. Tout d'abord, la visualisation et l'interprétation d'images est améliorée en développant une méthode de reconnaissance automatique des plans d'acquisition couramment utilisés en imagerie cardiaque. La méthode se base sur l'apprentissage par forêts aléatoires et par réseaux de neurones à convolution, en utilisant des larges banques d'images, où des types de vues cardiaques sont préalablement établies. La thèse s'attache dans un deuxième temps au traitement automatique des images cardiaques, avec en perspective l'extraction d'indices cliniques pertinents. La segmentation des structures cardiaques est une étape clé de ce processus. A cet effet une méthode basée sur les forêts aléatoires qui exploite des attributs spatio-temporels originaux pour la segmentation automatique dans des images 3Det 3D+t est proposée. En troisième partie, l'apprentissage supervisé de sémantique cardiaque est enrichi grâce à une méthode de collecte en ligne d'annotations d'usagers. Enfin, la dernière partie utilise l'apprentissage automatique basé sur les forêts aléatoires pour cartographier des banques d'images cardiaques, tout en établissant les notions de distance et de voisinage d'images. Une application est proposée afin de retrouver dans une banque de données, les images les plus similaires à celle d'un nouveau patient. / The recent growth of data in cardiac databases has been phenomenal. Cleveruse of these databases could help find supporting evidence for better diagnosis and treatment planning. In addition to the challenges inherent to the large quantity of data, the databases are difficult to use in their current state. Data coming from multiple sources are often unstructured, the image content is variable and the metadata are not standardised. The objective of this thesis is therefore to simplify the use of large databases for cardiology specialists withautomated image processing, analysis and interpretation tools. The proposed tools are largely based on supervised machine learning techniques, i.e. algorithms which can learn from large quantities of cardiac images with groundtruth annotations and which automatically find the best representations. First, the inconsistent metadata are cleaned, interpretation and visualisation of images is improved by automatically recognising commonly used cardiac magnetic resonance imaging views from image content. The method is based on decision forests and convolutional neural networks trained on a large image dataset. Second, the thesis explores ways to use machine learning for extraction of relevant clinical measures (e.g. volumes and masses) from3D and 3D+t cardiac images. New spatio-temporal image features are designed andclassification forests are trained to learn how to automatically segment the main cardiac structures (left ventricle and left atrium) from voxel-wise label maps. Third, a web interface is designed to collect pairwise image comparisons and to learn how to describe the hearts with semantic attributes (e.g. dilation, kineticity). In the last part of the thesis, a forest-based machinelearning technique is used to map cardiac images to establish distances and neighborhoods between images. One application is retrieval of the most similar images.
|
Page generated in 0.0692 seconds