Cette thèse est consacrée à l'étude théorique d'une méthode de calibration automatique des pénalités en sélection de modèles. Cette méthode se base sur une heuristique, appelée "heuristique de pente", qui stipule l'existence d'une pénalité minimale telle que la solution optimale du problème de pénalisation vaut deux fois celle-ci. En pratique, on estime la pénalité optimale en estimant préalablement la pénalité minimale, caractérisée par un changement brutal dans le comportement de la procédure de sélection de modèles autour de ce seuil de pénalisation. L'analyse théorique du phénomène de pente se base sur un contrôle à la constante près des déviations de l'excès de risque et de l'excès de risque empirique des estimateurs considérés, mesurant respectivement leur performance en prédiction et leur performance empirique. Ceci suggère en premier lieu, une forte spécification de la structure du problème étudié. Nous validons l'heuristique de pente dans un cadre général qui s'articule autour d'une notion nouvelle en M-estimation, que nous appelons "contraste régulier", et nous développons une méthodologie de preuve inédite, permettant de traiter à la fois la question des bornes supérieures et des bornes inférieures de déviation des excès de risque à modèle fixé. Nous retrouvons ainsi la plupart des résultats déjà connus sur l'heuristique de pente. En effet, nous donnons trois exemples d'estimation par minimum de contraste régulier, à savoir la régression par moindres carrés sur des modèles linéaires, l'estimation de la densité par moindres carrés sur des modèles affines et l'estimation de la densité par maximum de vraisemblance sur des ensembles convexes. Ceci nous permet d'étendre les résultats précédemment établis dans le cas de la régression à des modèles plus généraux et de valider l'heuristique de pente pour un risque non quadratique en considérant le cas de l'estimation par maximum de vraisemblance. Enfin, notre méthodologie de preuve fournit des pistes précises de recherche pour des situations non régulières, comme on en trouve en classification ou plus généralement en théorie de l'apprentissage statistique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00569372 |
Date | 22 October 2010 |
Creators | Saumard, Adrien |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds