Return to search

Towards well-defined gold nanomaterials via diafiltration and aptamer mediated synthesis

xvii, 203 p. / Gold nanoparticles have garnered recent attention due to their intriguing size- and shape-dependent properties. Routine access to well-defined gold nanoparticle samples in terms of core diameter, shape, peripheral functionality and purity is required in order to carry out fundamental studies of their properties and to utilize these properties in future applications. For this reason, the development of methods for preparing well-defined gold nanoparticle samples remains an area of active research in materials science. In this dissertation, two methods, diafiltration and aptamer mediated synthesis, are explored as possible routes towards well-defined gold nanoparticle samples.

It is shown that diafiltration has considerable potential for the efficient and convenient purification and size separation of water-soluble nanoparticles. The suitability of diafiltration for (i) the purification of water-soluble gold nanoparticles, (ii) the separation of a bimodal distribution of nanoparticles into fractions, (iii) the fractionation of a polydisperse sample and (iv) the isolation of [rimers from monomers and aggregates is studied. NMR, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements demonstrate that diafiltration produces highly pure nanoparticles. UV-visible spectroscopic and transmission electron microscopic analyses show that diafiltration offers the ability to separate nanoparticles of disparate core size, including linked nanoparticles. These results demonstrate the applicability of diafiltration for the rapid and green preparation of high-purity gold nanoparticle samples and the size separation of heterogeneous nanoparticle samples.

In the second half of the dissertation, the identification of materials specific aptamers and their use to synthesize shaped gold nanoparticles is explored. The use of in vitro selection for identifying materials specific peptide and oligonucleotide aptamers is reviewed, outlining the specific requirements of in vitro selection for materials and the ways in which the field can be advanced. A promising new technique, in vitro selection on surfaces (ISOS), is developed and the discovery using ISOS of RNA aptamers that bind to evaporated gold is discussed. Analysis of the isolated gold binding RNA aptamers indicates that they are highly structured with single-stranded polyadenosine binding motifs. These aptamers, and similarly isolated peptide aptamers, are briefly explored for their ability to synthesize gold nanoparticles.

This dissertation contains both previously published and unpublished co-authored material. / Adviser: James E. Hutchison

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/6240
Date12 1900
CreatorsSweeney, Scott Francis, 1977-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
Format58184 bytes, 9182892 bytes, application/pdf, application/pdf
RelationUniversity of Oregon theses, Dept. of Chemistry, 2007, Ph. D.

Page generated in 0.0021 seconds