L’anisotropie des propriétés mécaniques et acoustiques des matériaux poro-élastiques est un facteur déterminant dans le comportement de panneaux utilisés dans différents domaines de l’ingénierie. La compréhension des différents mécanismes physiques conditionnant la réponse en fréquence de ces structures est alors nécessaire. L’anisotropie intrinsèque des matériaux poreux visco-élastiques présente un potentiel particulier pour l’optimisation multi-fonctionnelle de parois multicouches. En effet, ces parois doivent souvent respecter des contraintes de raideur et isolation sonore et thermique de manière simultanée. Une méthode par superposition d’ondes planes dans des parois composées de matériaux poro-visco-élastiques est présentée afin d’analyser la sensibilité de la réponse acoustique de structures multicouches à l’alignement relative des couches poreuses anisotropes dans celles-ci. La méthode est validée et appliquée à l’étude d’un système composée d’une mousse de mélamine située entre deux parois métalliques. Cesystème permet d’illustrer des phénomènes intrinsèques aux couche poro-élastiques anisotropes, tel que le décalage en fréquence de la résonance fondamentale du système, et les couplages de compression-cisaillement dans le milieu poro-élastique. Ce phénomène de couplage est particulièrement intéressant puisqu’il n’est caractérisable que par la polarisation des ondes dans le milieu poro-élastique anisotrope. En fin, la méthode est appliquée afin d’optimiser un système multicouche pour des performances acoustiques. Les variables d’optimisation sont les orientations relatives des couches poro-élastiques anisotropes par rapport au système de coordonnées globales. Les solutions aux problèmes d’optimisation sont analysées en termes de comportement mécanique, ce qui permet d’établir une corrélation entre performances acoustiques et comportement dynamique. / The mechanical and acoustic anisotropy of media is a governing factor in the behaviour of multilayered systems including such media. The understanding of the mechanisms conditioning the dynamic behaviour of multilayered systems is of paramount importance. In particular, the intrinsicanisotropy of poroelastic media presents a potential for the optimal design of systems for multifunctional performances. Indeed, these multilayered systems are bound by stiffness, thermal and acoustic performance constraints in simultaneously. A plane wave method is presented to study theinfluence of material orientation in the dynamic behaviour of multilayered systems composed of anisotropic poroelastic media. The method is applied to a system composed of an anisotropic open-celled melamine foam core in between two metal sheets. This particular multilayered configuration allows to shed light on phenomena intrinsic to layers composed of anisotropic poroelastic materials, such as the frequency shift of the fundamental resonance of the panel, or the compression-shear coupling effects taking place in the poroelastic core layers. The latter phenomena is of particular importance, as it is evidenced on the unconventional polarisation of waves in anisotropic poroelastic media. Finally, the method is adapted to the optimisation of multi-layered systems for acoustic performance. the design variables are consequently the core material orientations with respect to the global coordinate system. The solutions to the optimisation problem are analysed in terms of dynamic behaviour, thus allowing to correlate acoustic performanceof the overall structure, and the response of each individual layer.
Identifer | oai:union.ndltd.org:theses.fr/2016LEMA1030 |
Date | 06 December 2016 |
Creators | Parra Martinez, Juan Pablo |
Contributors | Le Mans, Kungliga tekniska högskolan (Stockholm), Dazel, Olivier, Göransson, Peter, Wennhage, Per, Cuenca, Jacques |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds