• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On multilayered system dynamics and waves in anisotropic poroelastic media / Dynamique de systèmes multicouches et ondes dans des milieux poroélastiques anisotropes

Parra Martinez, Juan Pablo 06 December 2016 (has links)
L’anisotropie des propriétés mécaniques et acoustiques des matériaux poro-élastiques est un facteur déterminant dans le comportement de panneaux utilisés dans différents domaines de l’ingénierie. La compréhension des différents mécanismes physiques conditionnant la réponse en fréquence de ces structures est alors nécessaire. L’anisotropie intrinsèque des matériaux poreux visco-élastiques présente un potentiel particulier pour l’optimisation multi-fonctionnelle de parois multicouches. En effet, ces parois doivent souvent respecter des contraintes de raideur et isolation sonore et thermique de manière simultanée. Une méthode par superposition d’ondes planes dans des parois composées de matériaux poro-visco-élastiques est présentée afin d’analyser la sensibilité de la réponse acoustique de structures multicouches à l’alignement relative des couches poreuses anisotropes dans celles-ci. La méthode est validée et appliquée à l’étude d’un système composée d’une mousse de mélamine située entre deux parois métalliques. Cesystème permet d’illustrer des phénomènes intrinsèques aux couche poro-élastiques anisotropes, tel que le décalage en fréquence de la résonance fondamentale du système, et les couplages de compression-cisaillement dans le milieu poro-élastique. Ce phénomène de couplage est particulièrement intéressant puisqu’il n’est caractérisable que par la polarisation des ondes dans le milieu poro-élastique anisotrope. En fin, la méthode est appliquée afin d’optimiser un système multicouche pour des performances acoustiques. Les variables d’optimisation sont les orientations relatives des couches poro-élastiques anisotropes par rapport au système de coordonnées globales. Les solutions aux problèmes d’optimisation sont analysées en termes de comportement mécanique, ce qui permet d’établir une corrélation entre performances acoustiques et comportement dynamique. / The mechanical and acoustic anisotropy of media is a governing factor in the behaviour of multilayered systems including such media. The understanding of the mechanisms conditioning the dynamic behaviour of multilayered systems is of paramount importance. In particular, the intrinsicanisotropy of poroelastic media presents a potential for the optimal design of systems for multifunctional performances. Indeed, these multilayered systems are bound by stiffness, thermal and acoustic performance constraints in simultaneously. A plane wave method is presented to study theinfluence of material orientation in the dynamic behaviour of multilayered systems composed of anisotropic poroelastic media. The method is applied to a system composed of an anisotropic open-celled melamine foam core in between two metal sheets. This particular multilayered configuration allows to shed light on phenomena intrinsic to layers composed of anisotropic poroelastic materials, such as the frequency shift of the fundamental resonance of the panel, or the compression-shear coupling effects taking place in the poroelastic core layers. The latter phenomena is of particular importance, as it is evidenced on the unconventional polarisation of waves in anisotropic poroelastic media. Finally, the method is adapted to the optimisation of multi-layered systems for acoustic performance. the design variables are consequently the core material orientations with respect to the global coordinate system. The solutions to the optimisation problem are analysed in terms of dynamic behaviour, thus allowing to correlate acoustic performanceof the overall structure, and the response of each individual layer.
2

Métamatériaux performants dans la gamme des fréquences audibles : simulations et validations expérimentales / Metamaterials efficient in the audible frequency range : simulations and experimental validations

Lagarrigue, Clément 27 September 2013 (has links)
Depuis plusieurs dizaines d’années, les cristaux photoniques et phononiques font l’objet d’études poussées notamment enoptique, électromagnétisme et en acoustique. Ces Métamatériaux, constitués de diffuseurs périodiques, ont despropriétés impossibles à observer pour des matériaux usuels et peuvent par exemple, courber les rayons où interdire latransmission des ondes sonores sur certaines gammes de fréquences (bandes interdites). En agissant sur lescaractéristiques géométriques du cristal il est possible de combiner les pertes en transmission liées à la période, à deseffets de résonances plus basses fréquences liés aux diffuseurs (rigide, résonnant...) et obtenir des coefficients de transmission quasi nuls, où d’absorption quasi totale sur de larges bandes de fréquences. Deux métamatériaux sont étudiés, visant à trouver des solutions alternatives à des problématiques rencontrées en acoustique et utilisant un réseau périodique d’inclusions résonantes. Le premier est un cristal sonique utilisé comme barrière acoustique et créé à l’aide de cannes de bambou percées comportant des pertes en transmission basses fréquences. Le second est un panneau de matériau poreux enfermant des inclusions résonantes et offrant une absorption acoustique quasi totale pour des longueurs d’ondes jusqu’à 10 fois supérieures à l’épaisseur du matériau. Les comportements de ces deux dispositifs ont été étudiés théoriquement, expérimentalement et numériquement via plusieurs méthodes qui ont permis de mettre en évidence leurs excellentes performances pour des applications acoustiques dans l’audible. / Since several decades, photonic and phononic crystals are the center of numerous studies and in particular in the optics,electromagnetism and acoustics fields. These metamaterials, created by a periodic array of inclusions, have propertiesimpossible to obtain with usual materials. They can, for example, bend the waves or stop the waves for some frequencyranges (band gap). By changing the characteristic of the unit cell, it is possible to combine transmission losses linked to theperiodicity, with low frequency resonances linked to the type of scatterer (rigid, resonator...) and obtain very low transmissioncoefficient or very high absorption coefficient on very large frequency ranges depending on the device. Two metamaterialsdevices are studied to find alternative solutions, for acoustics problems, by using periodic array of scatterers. The first deviceis a sonic crystal used has an noise barrier and built with drilled bamboo rods, that have low frequency transmission losses(around 300 Hz and around 2000 Hz). The second device is a periodic array of resonant inclusions embedded in a porousplate that can absorb almost all the waves for a wide frequency range that correspond to wavelength up to 10 times bigger than de thickness of the plate. The behavior of this two devices are studied theoretically, experimentally and numerically by using several methods (Plane Waves Expansion, Multiple Scattering Theory for the first device and finite element method for the second). All this methods allow to bring out the very good performances of this metamaterials devices in audiblefrequency range.
3

Acoustic properties of natural materials / Propriétés acoustiques des matériaux naturels

Huang, Weichun 04 December 2018 (has links)
Dans cette thèse, nous étudions un métamatériau inspiré de la paille de blé pour l'absorption parfaite du son. Une botte de paille estidéalisée comme un milieu poreux anisotrope, composé d’un arrangement périodique très concentré de tubes creux cylindriques. L’approche théorique de ce métamatériau repose sur l'homogénéisation asymptotique à deux échelles d'un réseau perméable de résonateursparfaitement rigides dont la physique est enrichi par des résonances internes. Les principales caractéristiques de ce milieu poreux sont lacompressibilité effective négative autour de la résonance du tube et la réduction drastique de la vitesse de propagation du son (slowsound) à très basse fréquence. Une configuration optimale est conçue, basée sur la condition de couplage critique, pour laquelle la fuited’énergie du système résonnant ouvert est parfaitement compensée par les pertes intrinsèques induites par les pertes viscothermiques.Des mesures en tube à impédance sont effectuées sur des échantillons fabriqués par impression additive pour valider les résultatsthéoriques. Nous montrons que ce métamatériau est un absorbeur sub-longueur d'onde capable d’une absorption parfaite à très bassefréquence et d'introduire une quasi-bande interdite autour de la résonance du tube. De plus, la nature anisotrope de ce matériau conduit àune absorption globalement élevée à basse fréquence et ce pour toutes les incidences. Cette étude offre la possibilité de concevoir unabsorbeur acoustique sélectif en angle et en fréquence. Pour conclure, les résultats de cette thèse montrent que la paille est un boncandidat pour une absorption acoustique parfaite. / Straw-inspired metamaterials for sound absorption are investigated in this Thesis. A straw stack is idealized as a highly concentratedresonant anisotropic porous medium constituted of a periodic arrangement of densely packed cylindrical hollow tubes. The approach tothis metamaterial relies on the two-scale asymptotic homogenization of a permeable array of perfectly rigid resonators, where the physicsis further enriched by tailoring inner resonances. The main features of such sound absorbing medium are the possibility for the effectivecompressibility to become negative around the tube resonance and the drastic reduction of the effective sound speed (slow sound) at verylow frequency in the system. Moreover, an optimal configuration for sound absorption is designed, based on the critical couplingcondition, in which the energy leakage out of the open resonant system is perfectly compensated by the intrinsic losses induced by thevisco-thermal losses both in the anisotropic matrix and in the resonators. Impedance tube measurements are performed on 3-D printedsamples with controlled parameters to validate the theoretical results. This metamaterial is a sub-wavelength absorber that can achievetotal absorption at a very low frequency and possesses a quasi-band-gap around the tube resonance. Furthermore, the anisotropic nature ofthe configuration gives rise to high absorption at low-frequency range for all incidences and diffuse field excitation. It paves the way tothe design of angular and frequency selective sound absorber. To conclude, the results of this Thesis show that straw is a good candidatefor perfect sound absorption.
4

Métamatériaux et métasurfaces acoustiques pour la collecte d’énergie / Acoustic Metamaterials and Metasurfaces for Energy Harvesting

Qi, Shuibao 25 October 2018 (has links)
Artificiels structurés, présentent des propriétés inédites et des aptitudes uniques pour la manipulation d’ondes en général. L’avènement de ces nouveaux matériaux a permis de dépasser les limites classiques dans tout le domaine de l’acoustique-physique, et d’élargir l’horizon des recherches fondamentales. Plus récemment, une nouvelle classe de structures artificielles, les métasurfaces acoustiques, présentant une valeur ajoutée par rapport aux métamatériaux, avec des avantages en termes de flexibilité, de finesse et de légèreté de structures, a émergé. Inspirés par ces propriétés et fonctionnalités sans précédent, des concepts innovants pour la collecte d’énergie acoustique avec ces deux types de structures artificielles ont été réalisés dans le cadre de cette thèse. Tout d’abord, nous avons développé un concept à base d’un métamatériau en plaque en se basant sur le de l’approche de bande interdite et des modes de défaut permis par le mécanisme de Bragg. Dans la deuxième partie de cette thèse, des métasurfaces d’épaisseur sublongueur d’onde et ultra-minces composées d’unités labyrinthiques ou de résonateurs de Helmholtz ont été conçues et étudiées pour s’atteler à la focalisation et au confinement de l’énergie acoustique. Cette thèse propose un nouveau paradigme de collecte d’énergie des ondes acoustiques à base des métamatériaux et métasurfaces. La collecte de cette énergie acoustique renouvelable, très abondante et actuellement perdue, pourrait particulièrement être utile pour l’industrie de l’aéronautique, de l’automobile, du spatial, de l’urbanisme / Phononic crystals (PCs) and acoustic metamaterials (AMMs), well-known as artificially engineered materials, demonstrate anomalous properties and fascinating capabilities in various kinds of wave manipulations, which have breached the classical barriers and significantly broaden the horizon of the whole acoustics field. As a novel category of AMMs, acoustic metasurfaces share the functionalities of AMMs in exotic yet compelling wave tailoring. Inspired by these extraordinary capabilities, innovative concepts of scavenging acoustic energy with AMMs are primarily conceived and sufficiently explored in this thesis. Generally, a planar AMM acoustic energy harvesting (AEH) system and acoustic metasurfaces AEH systems are theoretically and numerically proposed and analyzed in this dissertation. At first, taking advantage of the properties of band gap and wave localization of defect mode, the AEH system based on planar AMM composed of a defected AMM and a structured piezoelectric material has been proposed and sufficiently analyzed. Secondly, subwavelength (λ/8) and ultrathin (λ/15) metasurfaces with various lateral configurations, composed of labyrinthine and Helmholtz-like elements, respectively, are designed and analyzed to effectively realize the acoustic focusing and AEH. This thesis provides new paradigms of AEH with AMMs and acoustic metasurfaces, which would contribute to the industries of micro electronic devices and noise abatement as well
5

Nonlinear architected metasurfaces for acoustic wave scattering manipulation / Métasurfaces non linéaires architecturées pour le contrôle des ondes acoustiques

Guo, Xinxin 06 December 2018 (has links)
Ces dernières années, les métamatériaux acoustiques sont largement étudiés pour leur intérêt dans la réalisation de divers types de contrôle des ondes à une échelle sub-longueur d’onde. En particulier, les métasurfaces acoustiques ont montré leur capacité à manipuler des ondes en limites de milieux de propagation via les processus de réflexion, de transmission et de réfraction. Contrairement au régime linéaire qui concerne l’immense majorité des travaux sur les métamatériaux acoustiques, les études sur les propriétés non linéaires des métamatériaux, de surcroit des métasurfaces, restent peu nombreuses, malgré la possibilité de générer des phénomènes acoustiques riches et variés. Les principaux freins au développement des métamatériaux non linéaires sont l'efficacité généralement faible de la réponse non linéaire et le manque de contrôle sur cette non-linéarité. Les travaux de recherche présentés ici ont donc pour objectif de concevoir des architectures de métasurfaces élastiques, permettant un contrôle des ondes acoustiques dans le régime non linéaire. En particulier l’effet de conversion d’une onde fondamentale vers son deuxième harmonique est étudié dans le processus de réflexion et de transmission unidirectionnelle. Cela nécessite le design de la non-linéarité élastique, qui est réalisé à base de modélisations discrètes de systèmes masses-ressorts et d'architectures composées d'éléments tournants. Les métasurfaces ainsi conçues, résonantes et à non-linéarité contrôlée, permettent de générer des effets non linéaires acoustiques inhabituels, potentiellement intéressants pour la manipulation d'ondes acoustiques. / In recent years, acoustic metamaterials have proven to be of great interest for their ability to achieve a variety of wave control at sub-wavelength scale. In particular, acoustic metasurfaces have shown their ability to manipulate waves from the boundaries of propagation media, via the reflection, transmission and refraction processes. Unlike the linear regime which has been extensively investigated in acoustic metamaterials, studies of the nonlinear acoustic properties of metamaterials, especially nonlinear acoustic metasurfaces, are quite scarce, despite the possibility to lead to a rich and diverse set of non-trivial acoustic phenomena. The key limitations in the development of nonlinear acoustic metamaterials are the typically weak efficiency of their nonlinear response together with the lack of control on this nonlinearity. This PhD research is thus dedicated to the design of nonlinear elastic metamaterial and metasurface architectures, enabling acoustic wave control in the nonlinear regime. Specifically, the conversion effect from a fundamental wave to its second harmonic is studied through the one-dimensional scattering process (reflection and transmission) by metasurfaces. This requires the elastic nonlinearity management, realized via the discrete modeling of lumped-element systems and architectures made of rotating units. Such designed metasurfaces, resonating and with harnessed nonlinearity, can create unusual nonlinear acoustic effects, potentially interesting for wave control. This research open the path to a more systematic study of nonlinear acoustic wave manipulation by metamaterials.
6

Ultrafast photogeneration and photodetection of coherent acoustic phonons in ferroelectric BiFeO3 / Photogénération et Photodétection Ultrarapide de Phonons Acoustiques Cohérentes dans le Ferroélectrique BiFeO3

Lejman, Mariusz 06 October 2015 (has links)
La technique d’optique ultra-rapide pompe-sonde, qui repose sur l’emploi de lasers à impulsion ultracourte(femtoseconde), permet de déclencher et étudier des processus ultrarapides dans la matière. L’acoustique picoseconde concerne pour sa part l’étude des processus de génération et détection de phonons acoustiques haute fréquence ainsi quel’analyse des nanomatériaux avec ces phonons (nanoéchographie). Les travaux de recherche de cette thèse avaient pourbut l’étude des couplages électronphonon acoustique dans le matériau ferroélectrique BiFeO3 par acoustique ultrarapide. Nous avons pu mettre en évidence que selon l’orientation du cristal photoexcité, l’émission des phonons acoustiques cohérents longitudinaux (LA) et transverses (TA) pouvait être modulée. De manière spectaculaire, nous avons purévéler un couplage électron-phonon acoustique transverse très efficace comme cela n’avait jamais été observé jusqu’alors dans les métaux, semiconducteurs ou nanostructures artificielles. Une étude détaillée indique que le mécanismepiézoélectrique inverse semble être le moteur de ce couplage électron-phonon (Lejman et al, Nature Communications, 2014). Dans une seconde partie, nous avons montré que BFO, ainsi qu’un autre ferroélectrique biréfringent LiNbO3 (LNO), peuvent être utilisés pour la conversion de mode ultra-rapide par processus acousto-optique (manipulation de la polarisation de la lumière à l’échelle de la picoseconde avec des phonons acoustiques). Cet effet, jamais mis enévidence jusqu’alors dans le domaine GHz, pourrait potentiellement être exploité dans de nouveaux dispositifs photoniques/phononiques pour des modulations acousto-optiques à haute cadence. / Ultrafast optical pump-probe technique, by exploiting ultrashort laser pulses (femtosecond), allows to initiate and monitor ultrafast processes in matter. Picosecond acoustics is a research field that focuses on the generation and detection mechanisms of high frequency coherent acoustic phonons in different media, as well as on their application in testing of nanomaterials and nanostructures. This PhDs research project was devoted to study of electron-acoustic phonon coupling in ferroelectric BiFeO3 (bismuth ferrite, BFO) by ultrafast acoustics. We have evidenced that depending on the BFO crystal orientation it was possible to tune the coherent phonons spectrum with in particular variable amplitude of longitudinal (LA) and transverse (TA) acoustic modes. In some grains with particular crystallographic orientations much stronger TA than LA signal was observed. Spectacularly, we have revealed an efficient coupling between electron and transverse acousticphonon. Such high ratio never reported before in any metal, semiconductor or nanostructure before, can be principally attributed to the photoinduced inverse piezoelectric effect (Lejman et al Nature Communications 2014). In a second part, we have shown that BFO as well as another birefringent ferroelectric LiNbO3 (LNO) can be used for ultrafast acousto-optic modeconversion (manipulation of light polarization at the picosecond time scale with coherent acoustic phonons). This effect, never reported at GHz up to now, can be potentially applied in photonics for ultrafast manipulation of light polarization bycoherent acoustic phonons in next generation photonic/phononic devices.

Page generated in 0.0139 seconds