Return to search

Nachweis intrazellulärer Salmonellen in phagozytierenden Zellen nach oraler Infektion von Mäusen

Die orale Aufnahme von Salmonellen stellt den natürlichen Infektionsweg für Mensch und Tier dar. Gelingt es den Salmonellen vom Darmlumen über das Darmepithel in den Organismus zu gelangen, können sie eine systemische Infektion hervorrufen (Septikämie, Typhus). Die Darmwand stellt die entscheidende Barriere dar, deren Abwehrfunktion bei Salmonelleninfektion im Rahmen dieser Arbeit charakterisiert werden sollte. Die Peyerschen Platten (PP), die in die Darmwand eingelagert sind und an den Bereich der M-Zellen angrenzen, stellen Lymphfollikel dar. In dem Grenzbereich zwischen M-Zellen und PP befinden sich viele Makrophagen und Dendritische Zellen. Diese Zellen sind als „antigen-presenting cells“ (APCs) besonders gut in der Lage, transloziertes Antigen aufzunehmen, es zu prozessieren und in Verbindung mit MHC-Komplexen auf ihrer Oberfläche zu präsentieren, um Effektorzellen des Immunsystems zu aktivieren. Es wurden Nachweismethoden für Salmonellenantigen und Salmonellen etabliert. Mit Hilfe eines spezifischen Antiserums konnte Salmonellenantigen über immunhistochemische und durchflusszytometrische Methoden nachgewiesen werden. Lebende Salmonellen wurden über die Ausplattierung auf XLD-Agarplatten detektiert. Isolierte Einzelzellen aus den PP wurden über Dichtegradientenzentrifugation in die Fraktion der phagozytierenden Zellen und in die Fraktion der B- und T-Zellen separiert und analysiert. Nach In-vitro-Infektion isolierter Dendritischer Zellen konnten über elektronen-mikroskopische Analyse Salmonellen in den Dendritischen Zellen nachgewiesen werden. 12 Stunden nach oraler Infektion der BALB/c-WT-Mäuse wurden über Ausplattierung Salmonellen in der Fraktion der phagozytierenden Zellen sowie der B-und T-Zellen der PP nachgewiesen. Der Anteil der infizierten Zellen war jedoch sehr niedrig. 4 Stunden nach oraler Infektion der Mäuse war ein ebenso großer Anteil der Salmonellen in den PP intrazellulär wie extrazellulär vorhanden. Salmonellenantigentragende Zellen wurden mit Hilfe der Durchflusszytometrie erfasst. So zeigte sich, dass bereits vier Stunden nach oraler Infektion ca. 0,09 % bis zu 0,61 % der Zellen aus Milz und den PP mit Salmonellenantigen beladen waren. Dies ist ein äußerst niedriger Anteil von Zellen, doch dieser niedrige Prozentsatz der antigenpräsentierenden Zellen reicht aus, um eine effektive Immunantwort zu induzieren. Histologische Untersuchungen auf Entzündungsreaktionen ergaben vier Stunden p.i. keinen Hinweis auf eine Entzündung. Mit elektronenmikroskopischen Untersuchungen konnten keine Salmonellen in den PP nachgewiesen werden. Der Vergleich der Organkeimlasten der PP der Mäuse mit und ohne Interleukin 12 (IL-12) zeigte signifikante Unterschiede. Während die Gesamtkeimzahl zweier PP in den Wildtypmäusen nur 7 Salmonellen betrug, konnten in den IL-12-defizienten Mäusen 28 bzw. 34 Salmonellen nachgewiesen werden. Das IL-12 wird als Reaktion auf einen entzündlichen Reiz gebildet, liegt aber auch in membrangebundener Form konstitutiv auf Makrophagen und Dendritischen Zellen vor. IL-12 spielt eine wichtige Rolle in der Aktivierung von Bakterizidiemechanismen. Deshalb ist es möglich, dass das IL-12 in den Wildtypmäusen zu einer verbesserten Abtötung der Bakterien führte. In den IL-12-defizienten Mäusen trug die Abwesenheit von IL-12 dazu bei, dass ein höherer Anteil der eingedrungenen Bakterien am Leben blieb. / The oral-faecal route is the general way for Salmonella to infect humans and animals. If Salmonella is able to reach the distal ileum and caecum, it can invade the mucosa and cause systemic diseases (septikemia, thyphoid fever). The gut mucosa is the most important barrier, which defense function will be characterised in this work. The PeyerŽs patches are lymphoid tissues and are located in the gut mucosa. They are colocalized with the M-cells in the gut epithelium. In this border region between epithelium and PeyerŽs patches reside a lot of macrophages and dendritic cells. These are antigen presenting cells and they can phagocytize antigen (bacteria), process antigen and present antigen in the lymphoid tissue to naive T-cells to activate them for a specific immune response. We established methods to detect Salmonella antigen and live Salmonellae. With a Salmonella-specific antiserum we could find Salmonella antigen by immunhistological and flow cytometric methods. Live Salmonellae were detected by plating on selective agar plates. Single cells were isolated from PeyerŽs patches and separated in phagocytic cells and B and T cells and analysed by several methods. After in vitro infection of isolated dendritic cells we detected Salmonellae in dendritic cells by electron microscopy. Therefore, Salmonellae are able to infect dendritic cells. 12 hours after oral infection Salmonellae could be detected in phagocytic cells and B and T cells isolated from PeyerŽs patches. The number of infected cells was very low in all cases. Four hours post infection there was about the same frequency of extracellular and intracellular Salmonellae. Salmonella antigen bearing cells were detected by single cell analysis four hours post infection. The analysis showed 0,09 % to 0,61 % cells of PeyerŽs patches or spleen positive for Salmonella antigen. This is only a low number of antigen-presenting cells, but it seems to be enough to induce an effective immune response. The bacterial burden in the PeyerŽs patches was different between mice with and without IL 12. While the bacterial burden of two PeyerŽs patches out of wild-type mice was only seven Salmonellae, two PeyerŽs patches of IL-12 knock out mice carried 28 to 34 Salmonellae. The number of infected cells was the same in wild-type and IL-12 knockout mice. IL-12 is produced during inflammatory responses to pathogens, but it is also available as a membrane-bound pool on macrophages and dendritic cells. It does not influence the phagocytic mechanisms, but has a very important role in inducing bactericidal activity. Therefore, it is possible that IL-12 in wild-type mice allows for a better killing of Salmonellae, while the lack of IL-12 in knockout mice leads to a reduced killing of Salmonellae.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:10983
Date09 November 2003
CreatorsSchröder, Regina
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds