Depuis une quinzaine d'années, l'étude des enregistrements de musique de chambre se focalise sous deux points de vue distincts : la séparation de sources et la transcription polyphonique. La séparation de sources cherche à extraire des enregistrements les signaux correspondant aux instruments présents. La transcription polyphonique vise à les décrire par un ensemble de paramètres : noms des instruments, hauteurs et volumes des notes jouées, etc. Les méthodes existantes, fondées sur l'analyse spatiale et spectro-temporelle des enregistrements, fournissent des résultats satisfaisants sur des cas simples. Mais généralement leur performance se dégrade vite au-delà d'un nombre d'instruments limite ou en présence de réverbération, d'instruments de même tessiture ou de notes à intervalle harmonique. Notre hypothèse est que ces méthodes souffrent souvent de modèles de sources instrumentales trop génériques. Nous proposons d'y remédier par la création de modèles d'instruments spécifiques basés sur un apprentissage. Dans ce travail, nous justifions cette hypothèse par l'étude des informations pertinentes présentes dans les enregistrements musicaux et de leur exploitation par les méthodes existantes. Nous construisons ensuite de nouveaux modèles probabilistes d'instruments inspirés de l'Analyse en Sous-espaces Indépendants (ASI) et nous donnons quelques exemples d'instruments appris. Enfin nous appliquons ces modèles à la séparation et la transcription d'enregistrements réalistes, parmi lesquels des pistes de CD et des mélanges synthétiques convolutifs ou sous-déterminés de ces pistes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00544710 |
Date | 02 December 2004 |
Creators | Vincent, Emmanuel |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds