Submitted by Wallison Medeiros (wamedeiros@hotmail.com) on 2019-01-22T10:58:45Z
No. of bitstreams: 1
Medeiros_WA.pdf: 11036463 bytes, checksum: 842aff888e052eb4d2fc0aa7a42f3484 (MD5) / Approved for entry into archive by Lucas Paganine (lucaspaganine@ibict.br) on 2019-02-05T16:59:15Z (GMT) No. of bitstreams: 1
Medeiros_WA.pdf: 11036463 bytes, checksum: 842aff888e052eb4d2fc0aa7a42f3484 (MD5) / Made available in DSpace on 2019-02-05T16:59:18Z (GMT). No. of bitstreams: 1
Medeiros_WA.pdf: 11036463 bytes, checksum: 842aff888e052eb4d2fc0aa7a42f3484 (MD5)
Previous issue date: 2018 / This research presents a study on the behavior of precast concrete frames with participating masonry infill to be considered in the design of a building lateral load bracing system. The study brings a literature review on the topic. An experimental testing of a reinforced concrete frame infilled or not with masonry is used to calibrate a finite element model using the Simulia Abaqus 2017 package. The model uses concrete damage plasticity to consider both the concrete and the masonry behaviour. Embedded elements are used to consider rebars inside the concrete. Masonry elements are considered homogeneous with contact surfaces along the concrete-masonry interface. After the properties were calibrated the numerical models showed excellent accuracy when compared to the experimental tests. Precast concrete frames, whose dimensions and properties were from a real case, was then modelled with and without the participating masonry frame. The column-corbel and beam connection was modelled with solid elements with contact surface on the interface allowing to close represent its behaviour. Models considered a frame with one, five and ten storeys, two masonry strength and the use or nor of a mortar layer to fix masonry under the concrete beam. Conclusion from the finite element model analyses indicate the influence of each parameter on the system behaviour. The FEM results were then used to calibrate the width of a diagonal truss to be used in simple bar element models. Finally, a 3D-frame model was used to evaluate a actual 10-story precast concrete building considering or not the participating infill masonry. Only two masonry walls, close to the building central core and without openings, were considered yet results indicate great influence on considering the participating infill leading to an efficient building design. Future work is proposed to experimentally evaluate the conclusions from the numerical analyses here reported. / O presente trabalho realizou um estudo sobre o comportamento de estruturas aporticadas em concreto pré-moldado preenchidas com painéis de alvenaria, para fim de contraventamento de edificações, considerando a contribuição dessa alvenaria de preenchimento no pórtico pré-moldado para análise de ações horizontais. O estudo traz uma revisão da literatura sobre o tema. Um ensaio experimental de um pórtico de concreto armado preenchido ou não com alvenaria é usado para calibrar um modelo de elementos finitos usando o pacote Simulia Abaqus 2017. O modelo utiliza o dano plástico do concreto (CDP) para considerar o comportamento do concreto e alvenaria. Elementos embutidos são usados para considerar armaduras dentro do concreto. Os elementos de alvenaria são considerados homogêneos com as superfícies de contato ao longo da interface concreto-alvenaria. Depois que as propriedades foram calibradas, os modelos numéricos apresentaram excelente precisão quando comparados aos testes experimentais. Os quadros de concreto pré-fabricados, cujas dimensões e propriedades eram de um caso real, foram então modelados com e sem o preenchimento de alvenaria participante. A conexão pilar-viga foi modelada com elementos sólidos com superfície de contato na interface permitindo representar seu comportamento. Os modelos considerados foram um quadro com um, cinco e dez andares, duas resistências de alvenaria e o uso ou não de uma camada de argamassa para fixar alvenaria sob a viga de concreto. A conclusão das análises do modelo de elementos finitos indica a influência de cada parâmetro no comportamento do sistema. Os resultados de MEF foram utilizados para calibrar a largura de uma diagonal equivalente para ser usado em modelos simples de elementos de barras. Finalmente, um modelo de pórticos em 3D foi usado para avaliar um prédio de concreto pré-moldado de 10 andares, considerando ou não a alvenaria participante. Apenas duas paredes de alvenaria, perto do núcleo central do edifício e sem aberturas foram consideradas, os resultados indicam grande influência ao considerar o preenchimento participante, levando a um projeto de construção eficiente. O trabalho futuro é proposto para avaliar experimentalmente as conclusões das análises numéricas aqui relatadas.
Identifer | oai:union.ndltd.org:IBICT/oai:deposita.ibict.br:deposita/35 |
Date | January 2018 |
Creators | Medeiros, Wallison |
Contributors | http://lattes.cnpq.br/7798651726059215, Parsekian, Guilherme, http://lattes.cnpq.br/7798651726059215, Silva, Roberto Márcio da, http://lattes.cnpq.br/7997560123447909, Franco, Luiz Sérgio, http://lattes.cnpq.br/7977670521578351, Parsekian, Guilherme |
Publisher | Universidade Federal de São Carlos, Programa de Pós-Graduação em Engenharia Civil, Brasil, Universidade Federal de São Carlos |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Comum do Brasil - Deposita, instname:Instituto Brasileiro de Informação Ciência e Tecnologia, instacron:IBICT |
Rights | http://creativecommons.org/licenses/by-sa/4.0/, info:eu-repo/semantics/openAccess |
Relation | ABAQUS. v2017, AGÊNCIA BRASILEIRA DE DESENVOLVIMENTO INDUSTRIAL. Manual da construção industrializada - Volume 1: Estrutura e Vedação. ABDI. Brasília, p. 205. 2015. AL-CHAAR, G. Non-ductile behavior of reinforced concrete frames with masonry infill panels subjected to in-plane loading. Illinois: University of Illinois, 1998. AL-CHAAR, G.; ABRAMS, D. Parametric studies on seismic behavior of frame infill systems. Proceedings of Ninth Canadian Masonry Symposium, Fredericton, p. 12, June 2001. AL-CHAAR, G.; LAMB, G. E.; ABRAMS, D. P. Seismic behavior of a multistory and multibay frame-infill system. Proceedings of Ninth Canadian Masonry Symposium, Fredericton, June 2001. AL-CHAAR, G.; LAMB, G. E.; ABRAMS, D. P. Effect of openings on structural performance of unreinforced masonry infilled frames. Proceedings of Ninth North American Masonry, Clemson, June 2003. AL-CHAAR, G.; MEHRABI, A. B.; MANZOURI, T. Finite element interface modeling and experimental verification of masonry-infilled R/C frames. The Masonry Society Journal, Longmont, v. 26, p. 47-65, July 2008. ALVARENGA, R. C. S. S. Análise Teórico-Experimental de Estruturas Compostas de Pórticos de Aço Preenchidos com Alvenaria de Concreto Celular Autoclavado. São Carlos: Escola de Engenharia de São Carlos - Universidade de São Paulo, 2002. 342 p. ASSOCIAÇÃO BRASILEIRA DA CONSTRUÇÃO INDUSTRIALIZADA. Manual Técnico de Pré-Fabricados de Concreto. São Paulo: ABCI, 1986. 171 p. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123: Forças devidas ao vento em edificações. ABNT. Rio de Janeiro. 1988. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto - Procedimentos. ABNT. Rio de Janeiro. 2014. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6136: Blocos vazados de concreto simples para alvenaria — Requisitos. Rio de Janeiro: ABNT, 2016. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9062: Projeto e execução de estruturas de concreto pré-moldado. ABNT. Rio de Janeiro. 2017. ASTERIS, P. G. Finite element micro-modeling of infilled frames. Electronic Journal of Structural Engineering, v. 8, p. 11, 2008. ASTERIS, P. G. et al. Mathematical macromodeling of infilled frames: state of the art. Journal of Structural Engineering, n. 137, p. 1508-1517, December 2011. ASTERIS, P. G. et al. Mathematical micromodeling of infilled frames: State of the art. Egineering Structures, New York, v. 56, p. 1905-1921, September 2013. BOLHASSANI, M. Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls. Philadelphia: Drexel University, 2015. BRAGUIM, J. R. Contribuições ao Estudo do Enrijecimento de Estruturas de Aço em Edifícios de Múltiplos Pavimentos. São Paulo: Escola Politécnica, Universidade de São Paulo, 1989. 130 p. BRZEV, S. N. Earthquake Performance of Confined Masonry Construction. In: ______ Earthquake-Resistant Confined Masonry Construction. Kanpur: NICEE, 2007. p. 82. CALIÒ, I.; PANTÒ, B. A macro-element modelling approach of Infilled Frame Structures. Computers and Structures, v. 143, p. 91-107, 2014. ISSN 0045-7949. CANADIAN STARDARDS ASSOCIATION. S304 - Design of masonry structures. CSA. Ontario. 2014. CHEN, X.; LIU, Y. A finite element study of the effect of vertical loading on the in-plane behavior of concrete masonry infills bounded by steel frames. Engineering Structures, v. 117, p. 118-129, March 2016. CHIOU, Y.; TZENG, J.; LIOU, Y. Experimental and analytical study of masonry infilled frames. Journal of Structural Engineering, New York, v. 125, p. 1109-1117, Outubro 1999. DASSAULT SYSTÈMES. Abaqus - Documentation Collection. Johnston: SIMULIA, 2017. DAWE, J. L.; LIU, Y.; SEAH, C. K. A parametric study of masonry infilled steel frames. Canadian Journal of Civil Engineering, New York, v. 28, p. 149-157, February 2001. DAWE, J. L.; SEAH, C. K. Behavior of mansory infilled steel frames. Canadian Journal of Civil Engineering, Ottawa, v. 16, p. 865-876, 1989. DI TRAPANI, F. et al. Macroelement model for in-plane and out-of-plane responses of masonry infills in frame structures. Journal of Structural Engineering, v. 144, April 2018. ISSN 0733-9445. DRYSDALE, R. G.; HAMID, A. A. Masonry Structures Behavior and Design. Mississauga: Canada Masonry Design Centre, 2005. EL DEBS, M. K. Concreto pré-moldado, fundamentos e aplicações. 2. ed. São Paulo: Oficina de textos, 2017. 456 p. EL-DAKHAKHNI, W. W.; ELGAALY, M.; HAMID, A. A. Three-strut model for concrete mansory-infilled frames. Journal of Structural Engineering, v. 129, p. 177-185, February 2003. ELLIOTT, K. S.; JOLLY, C. K. Multi-storey precast concrete framed structures. 2a. ed. Oxford: Wiley-Blackwell, 2013. 761 p. FLANAGAN, R. D.; BENNETT, R. M. In-plane behavior of structural clay tile infilled frames. Journal of Structural Engineering, New York, v. 125, p. 590-599, June 1999. FLANAGAN, R. D.; BENNETT, R. M. In-plane Analysis of Mansory Infill Materials. Practice Periodical on Structural Desing and Construction, p. 176-182, 2001. GUO, Z. Principles of reinforced concrete. Oxford: Elsevier, 2014. ISBN 978-0-12-800859-1. HAACH, V. G.; VASCONCELOS, G.; LOURENÇO, P. B. Parametrical study of masonry walls subjected to in-plane loading througth numerical modeling. Engineering Structures, v. 33, p. 1377-1389, February 2011. ISFELD, A. et al. Testing and finite element modeling of concrete block masonry in compression. Halifax: 13th Canadian Masonry Symposium. 2017. p. 11. JANKOWIAK, T.; LODYGOWSKI, T. Identification of parameters of concrete damage plasticity constitutive model. Foundations of Civil and Environmental Engineering, Poznan, v. 6, p. 53-69, 2005. ISSN 1642-9303. KALTAKC, M. Y.; KÖKEN, A.; KORKMAZ, H. H. Analytical solutions using the equivalent strut tie method of infilled steel frames and experimental verification. Canadian Journal of Civil Engineering, Birmingham, v. 33, p. 632-638, June 2006. KAUSHIK, H. B.; RAI, D. C.; JAIN, S. K. Stress-strain characteristics of clay brick masonry under axial compresion. Material in Civil Engineering, v. 19, p. 728-739, September 2007. KMIECIK, P.; KAMINSKI, M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of Civl and Mechanical Engineering, v. 11, n. 3, p. 623-636, 2011. KOUTROMANOS, I. et al. Numerical modeling of masonry-infilled RC frames subjectes to seismic loads. Computers and Structures, v. 89, p. 1026-1037, Fevereiro 2011. KUPFER, H.; HILSDORF, H. K.; RUSCH, H. Behavior of concrete under biaxial stresses. Journal Proceedings, v. 66, n. 8, p. 656-666, January 1969. KWAN, K. H.; LIAUW, T. C. Non-linear Analysis of Multi-Storey Infilled Frames. Proceedings of the Institute of Civil Engineers, v. 73, June 1982. KWAN, K. H.; LIAUW, T. C. Plastic Theory of Infilled Frames with Finite Interface Shear Strength. Proceedings of the Institute of Civil Engineers, v. 75, p. 379-396, December 1983. LEE, J.; FENVES, G. L. Plastic-damage model for cyclic loading of concrete structures. Journal of engineering mechanics, v. 124, p. 892-900, agosto 1998. LIU, Y.; SOON, S. Experimental study of concrete masonry infills bounded by steel frames. Canadian Journal of Civil Engineering, Birmingham, v. 39, p. 180-190, June 2012. LOURENÇO, P. B.; ROTS, J. G. Multisurface interface model for analysis of mansory structures. Journal of Engineering Mechanics, New York, v. 123, p. 660-668, July 1997. LOURENÇO, P. J. B. B. Computational strategies for mansory structures. Delft: Delft University of Technology, 1996. LUBLINER, J. et al. A Plastic-Damage Model for Concrete. International Journal of Solids ans Structures, v. 25, p. 299-326, março 1989. MACLEOD, I. A.; LIAUW, T. C. Analysis of shear wall buildings by frame method. Proceedings of the Institution of Civil Engineers, v. 57, p. 179-182, March 1974. MADIA, F. C. A. R. Estudo de pórticos preenchidos com alvenaria. São Carlos: UFSCAR, 2012. 142 p. MAINSTONE, R. J. On the Stiffness and Strengths of Infilled Frames. Proceedings of the Institution of Civil Engineers, v. IV, p. 57-90, 1971. MEDEIROS, P. et al. Numerical modelling of non-confined and confined masonry walls. Construction and Building Materials, v. 41, p. 968-976, 2013. MEHRABI, A. B. et al. Experimental evaluation of mansory-infilled RC frames. Journal of Structural Engineering, New York, v. 122, p. 228-237, March 1996. MEHRABI, A. B.; SHING, P. B. Finite element modeling of masonry-infilled RC frames. Journal of Structural Engineering, New York, v. 123, p. 604-613, May 1997. MEZIGHECHE, N. et al. Behavior of the masonry infill in structures subjected to the horizontal loads. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, v. 9, p. 717-720, June 2015. MINAIE, E. Behavior and vulnerability of Reinforced Masonry Shear Walls. Philadelphia: Drexel University, 2009. MOGHADDAM, H. A. Lateral load behavior os masonry infilled steel frames with repais and retrofit. Journal of Structural Engineering, New York, v. 130, p. 56-63, January 2004. NAZIEF, M. A.; KORANY, Y. Diagonal strut model for masonry infill shear walls in various standards and codes. Proceedings of the 12th Canadian Masonry Symposium, Vancouver, 2013. NAZIEF, M. A.; KORANY, Y. Finite element modelling for masonry infill shear walls with and without openings. Proceedings of the 4th Annual International Conference on Civil Engineering, Structural Engineering and Mechanics, Athens, 2014. PARSEKIAN, G. A.; HAMID, A. A.; DRYSDALE, R. G. Comportamento e dimensionamento de alvenaria estrutural. 2a. ed. São Carlos: EdUFSCar, 2013. POLYAKOV, S. V. Masonry in framed buildings. Moscow, 1956. RATHBUN, J. C. Wind forces on a tall building. Proceedings American Society of Civil Engineers, v. 64, p. 1335-1375, 1938. SANTOS, C. F. R. Avaliação numérica da interação de paredes de alvenaria estrutural submetidas a ações verticais. Viçosa: Universidade Federal de Viçosa, 2016. SAP2000. V11. California: Computers and Structures, 2007. SATTAR, S. Influence of masonry infill walls and other building characteristics on seismic collapse of concrete frame buildings. Univ. of Colorado. Boulder, p. 202. 2013. SAYED-AHMED, E. Y.; SHRIVE, N. G. Nonlinear Finite-Element Model of Hollow Masonry. Journal of Structural Engineering, v. 122, p. 683-690, June 1996. ISSN 0733-9445. SEAH, C. K. A Universal approach for analysis and design of mansory infilled frame structures. New Brunswick: University of New Brunswick, 1998. 273 p. SILVA, L. R. Modelagem de Pórticos de Concreto Armado Preenchidos com a Consideração de Aberturas nos Painéis de Alvenaria. Santa Maria: UFSM, 2014. 141 p. SMITH, B. S. Behaviour of square infilled frames. Journal of the Structural Division, ASCE, New York, v. 92, p. 381-403, 1966. SMITH, B. S.; CARTER, C. A Method of Analysis for Infill Frames. Proceedings of the Institution of Civil Engineers, v. 44, p. 31-48, September 1969. SMITH, B. S.; COULL, A. Infilled-Frame Structures. In: SMITH, B. S.; COULL, A. Tall Building Structures: Analysis and Design. New York: Wiley, 1991. Cap. 8, p. 168-183. STARDARD ASSOCIATION OF NEW ZEALAND. 4320: Design of reinforced concrete masonry structures. NZS. [S.l.]. 2004. STAVRIDIS, A.; SHING, P. B. Finite-Element Modeling of Nonlinear Behavior of Masonry-Infilled RC Frames. Journal of Structural Engineering, v. 136, p. 285-296, March 2010. ISSN 0733-9445. THE INTERNATIONAL FEDERATION FOR STRUCTURAL CONCRETE. Precast Concrete in Mixed Construction. fib. Lausanne. 2002. THE INTERNATIONAL FEDERATION FOR STRUCTURAL CONCRETE. Planning and Design Handbook on Precast Build Structures. fib. [S.l.]. 2013. THE MASONRY SOCIETY. 402/602: Building Code Requirements and Specification for Masonry Structures. TMS. 2016. ZHAI, C. et al. Numerical simulation of masonry-infilled RC frames using XFEM. Journal of Structural Engineering, v. 143, January 2018. ISSN 0733-9445. |
Page generated in 0.0062 seconds