Return to search

Altered expression of inflammasome components in inflammatory bowel disease

The inflammasome complex is a multiprotein complex that may play a role in the pathogenesis of inflammatory bowel disease (IBD) by secreting the inflammatory cytokines interleukin (IL)-1β and IL-18, and inducing pyroptosis, as a response to signals through several inflammasome sensors. This study looked at the expression of several inflammasome components in the ileum and colon of patients suffering from IBD. The inflammasome sensors NLRP1, NLRP3, AIM2 and pyrin were upregulated in whole intestinal tissue of IBD patients, particularly in the colon. NLRP6 expression was increased in the colon of Crohn's disease patients, but not ulcerative colitis patients relative to colon of controls, and was reduced in the ileum of Crohn's disease patients compared to control ileum. Expression of caspase-1 and IL-1β, but not IL-18, were also increased in ileum and colon tissue from Crohn's patients. To identify the cell type where inflammasome expression was altered in Crohn’s disease, transcription of inflammasome subunits in intestinal tissue enriched for epithelial cells or lamina propria (LP) cells was analysed. These analyses indicated that LP cells have greater expression of the inflammasome sensors NLRP1, NLRP3, AIM2 and pyrin relative to epithelial cells, both during disease and in control tissue. Moreover, LP cells from Crohn’s patients have higher expression level of NLRP1, AIM2 and pyrin than LP cells from controls. In contrast the inflammasome sensor NLRP6 was more highly expressed by epithelial cells relative to LP cells in general, and NLRP6 expression in LP cells from IBD patients was lower than that observed in LP cells from controls. The observed differential expression of inflammasome components in controls versus IBD intestine and in different cellular fractions of intestinal tissue highlight the importance of understanding the role of the inflammasome in IBD and hints at the possibility of targeting the inflammasome pathway as a future treatment strategy.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-392520
Date January 2019
CreatorsForsskåhl, Sophia Katarina
PublisherUppsala universitet, Institutionen för biologisk grundutbildning, Göteborg Universitet, Biomedicinska institutionen, Avdelningen för mikrobiologi och immunologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds