Return to search

Génération de phrases multilingues par apprentissage automatique de modèles de phrases

La Génération Automatique de Texte (GAT) est le champ de recherche de la linguistique informatique qui étudie la possibilité d'attribuer à une machine la faculté de produire du texte intelligible. Dans ce mémoire, nous présentons une proposition de système de GAT reposant exclusivement sur des méthodes statistiques. Son originalité est d'exploiter un corpus en tant que ressource de formation de phrases. Cette méthode offre plusieurs avantages : elle simplifie l'implémentation d'un système de GAT en plusieurs langues et améliore les capacités d'adaptations d'un système de génération à un domaine sémantique particulier. La production, d'après un corpus d'apprentissage, des modèles de phrases finement étiquetées requises par notre générateur de texte nous a conduit à mener des recherches approfondies dans le domaine de l'extraction d'information et de la classification. Nous décrivons le système d'étiquetage et de classification de contenus encyclopédique mis au point à cette fin. Dans les étapes finales du processus de génération, les modèles de phrases sont exploités par un module de génération de texte multilingue. Ce module exploite des algorithmes de recherche d'information pour extraire du modèle une phrase pré-existante, utilisable en tant que support sémantique et syntaxique de l'intention à communiquer. Plusieurs méthodes sont proposées pour générer une phrase, choisies en fonction de la complexité du contenu sémantique à exprimer. Nous présentons notamment parmi ces méthodes une proposition originale de génération de phrases complexes par agrégation de proto-phrases de type Sujet, Verbe, Objet. Nous envisageons dans nos conclusions que cette méthode particulière de génération puisse ouvrir des voies d'investigations prometteuses sur la nature du processus de formation de phrases

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00622561
Date12 November 2010
CreatorsCharton, Eric
PublisherUniversité d'Avignon
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds