Return to search

Estudo te?rico das rea??es de abstra??o e adi??o do radical hidroxila com o 2,5-dimetilfurano / Theoretical study of abstraction and addiction reactions of hydroxyl radical with 2,5-dimethylfuran

Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-30T17:17:07Z
No. of bitstreams: 1
2015 - Than?zia Ferraz Santos.pdf: 1742658 bytes, checksum: 07706cbaaa52be04cb7ec04d0d453fa2 (MD5) / Made available in DSpace on 2017-05-30T17:17:07Z (GMT). No. of bitstreams: 1
2015 - Than?zia Ferraz Santos.pdf: 1742658 bytes, checksum: 07706cbaaa52be04cb7ec04d0d453fa2 (MD5)
Previous issue date: 2015-08-28 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / In this work, potential energy surfaces for the reactions of hydroxyl radical and 2,5-dimethylfuran were studied using the Density Functional Theory. The stationary points, such as reactants, pre-barrier complex, transition states and products were located at BHandHLYP/aug-cc-pVDZ and M06-2X-cc-pVDZ levels by geometry optimization, followed by the calculations of vibrational frequencies. Single point calculations using CCSD(T) were also explored. Thermodynamics properties of enthalpy, entrophy and Gibbs free energies have been determinated at 298,15 K within the conventional equations of Statistical Thermodynamics. The results suggest different addition mechanisms, since an analysis of the potential energy surface (PES) in BHandHLYP/ aug-cc-pVDZ points to paths going through a pi-type intermediary, while in M06-2X/aug-cc-pVDZ the intermediary would have a sigma-type interaction. About the abstraction reactions, only the PES obtained in M06-2X/aug-cc-pVDZ level points to the formation of a pre-barrier complex. The rate coefficients have been determined on the basis of the Variational Transition State Theory, with the kcvt program. The coefficient obtained at CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ for the mechanism which includes the participation of ?-PC is ???????=48,4?10?11, cm? molec-1 s-1, approximately 4 times higher than the experimental rate coefficient. Deviations of this magnitude are considered satisfactory in theoretical calculation of kinetic parameters. Addition of OH should be the main degradation pathway for furan and its derivatives, during daytime. Moreover, it was possible to clarify the effect of the formation of pre-barrier complexes in the reactions between DMF and OH radicals and propose rate coefficients in the high temperature region, which can be applied in combustion studies / Neste trabalho, as superf?cies de energia potencial para as rea??es do radical hidroxila (OH) com o 2,5-dimetilfurano (DMF) foram estudadas em detalhes, utilizando a Teoria do Funcional de Densidade. Pontos estacion?rios como reagentes, complexos pr?-barreira, estados de transi??o e produtos foram localizados por procedimentos de otimiza??o de geometria, acompanhado do c?lculo das frequ?ncias vibracionais, em n?veis BHandHLYP/aug-cc-pVDZ e M06-2X/aug-cc-pVDZ. C?lculos single point a partir da metodologia coupled-cluster com simples e duplas excita??es com tratamento perturbativo das triplas conectadas, CCSD(T), tamb?m foi explorado. Propriedades termodin?micas de entalpia, entropia e energia livre de Gibbs foram calculadas a 298,15 K atrav?s das equa??es da Termodin?mica Estat?stica. Os resultados sugerem mecanismos de adi??o diferentes, j? que uma an?lise da superf?cie de energia potencial (SEP) em BHandHLYP/aug-cc-pVDZ aponta para caminhos passando por um intermedi?rio do tipo pi, enquanto em M06-2X/aug-cc-pVDZ o intermedi?rio seria do tipo sigma. Na abstra??o, apenas a SEP obtida em M06-2X/aug-cc-pVDZ aponta para a forma??o de um intermedi?rio pr?-barreira. Coeficientes de velocidade foram determinados com base na Teoria do Estado de Transi??o Variacional, com aux?lio do programa kcvt. O coeficiente CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ para o mecanismo que inclui a participa??o do ?-PC ? de ???????=48,4?10?11 cm? molec-1 s-1, superestimado em rela??o ao coeficiente experimental em aproximadamente 4 vezes. Desvios dessa magnitude s?o esperados em c?lculos te?ricos, especialmente quando envolvem mol?culas volumosas. Pode-se constatar que a adi??o de OH deve ser a principal rota de degrada??o para o furano e seus derivados durante o dia. Al?m disso, foi poss?vel esclarecer o efeito da forma??o de intermedi?rios pr?-barreira nas rea??es entre DMF e o radical OH.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1709
Date28 August 2015
CreatorsSantos, Than?zia Ferraz
ContributorsBauerfeldt, Glauco Favilla, Silva, Clarissa Oliveira da, Rocha, Alexandre Braga da
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Qu?mica, UFRRJ, Brasil, Instituto de Ci?ncias Exatas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
RelationCAP?TULO IX - REFER?NCIAS BIBLIOGR?FICAS ATKINSON, R.; AREY, J. Atmospheric Degradation of Volatile Organic Compounds. J. Chem. Rev., v. 103, p. 4605?4638, 2003. BABOUL, A. G.; SCHLEGEL, H. B. Improved Method for Calculating Projected Frequencies along a Reaction Path. J. Chem. Phys., v. 107, p. 9413-9417, 1997. BAER, T.; HASE, W. L. Unimolecular Reaction Dynamics: Theory and Experiments. New York , Oxford University Press, Inc. 1996. BARBOSA, T. S.; NIETO, J. D.; COMETTO, P. M.; LANE, S. I.; BAUERFELD, G. F.; ARBILLA, G. Theoretical calculations of the kinetics of the OH reaction with 2-methyl-2-propen-1-ol and its alkene analogue. RSC Adv., v. 4, p. 20830-20840, 2014. BIERBACH, A.; BARNES, I.; BECKER, K. H. Rate coefficients for the gas-phase reactions of hydroxyl radicals with furan, 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran at 300 ? 2 K. Atmos. Environ., v. 26, p. 813-817, 1992. BINDER, J. B.; RAINES, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals .J. Am. Chem. Soc., v. 131, p. 1979-1985, 2009. BOZELL, J. J.; PETERSEN, G. R. Technology development for the productionof biobased products from biorefinery carbohydrates ? the US Departmentof Energy?s ?Top 10? revisited. Green Chem., v. 12, p. 539?554, 2010. CABA?AS, B.; VILLANUEVA, F.; MART?N, P.; BAEZA, M. T.; SALGADO, S.; JIM?NEZ, E. Study of reaction processes of furan and some furan derivatives initiated by Cl atoms. Atmospheric Environment, v. 39, p. 1935?1944, 2005. 58 DUTTA, S.; DE, S.; ALAM, M. I.; ABU-OMAR, M. M.; SAHA, B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., v. 288, p. 8-15, 2012. FRANCISCO-M?RQUEZ, M.; ALVAREZ-IDABOY, J. R.; GALANO, A.; VIVIER-BUNGE, A.A Possible Mechanism for Furan Formation in the Tropospheric Oxidation of Dienes. Environ. Sci. Technol., v. 39, p. 8797-8802, 2005. FRIESE, P.; SIMMIE, J.M.; OLZMANN, M. The reaction of 2,5-dimethylfuran with hydrogen atoms ? An experimental and theoretical study. Proceedings of the Combustion Institute, v. 34, p. 233?239, 2013. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, ?.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. GAUSSIAN, INC., WALLINGFORD CT, Gaussian 09, Revision A.02, 2009. FUKUI, K. A. A Formulation of the Reaction Coordinate. J. Phys Chem., v. 74, 4161, 1970. 59 GREENWALD, E. E.; NORTH, S. W.; GEORGIEVSKII, Y.; KLIPPENSTEIN, S. J.A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J. Phys. Chem. A, v. 109, p. 6031-6044, 2005. GRELA, M. A.; AMOREBIETA, V. T.; COLUSSI, A. J. Very Low Pressure Pyrolysis of Furan, 2-Methytfuran, and 2,5-Dimethylfuran. The Stability of the Furan Ring. J. Phys. Chem., v. 89, p. 38-41, 1985. GONZALEZ, Z.; SCHLEGEL, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem., v. 94, p. 5523-5527, 1990. HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Review, v. 136, n. 3B, p. 864-871, 1964. JIAO, C. Q.; ADAMS, S. F.; GARSCADDEN, A. Ionization of 2,5-dimethylfuran by electron impact and resulting ion-parent molecule reactions. Journal of Applied Physics, v. 106, 2009. KOHN, W.; SHAM, L. Self-Consistent Equation Using Exchange and Correlation Effects. Physical Review, v. 140, n. 4A, p. A1133? A1138, 1965. LIFSHITZ, A.; TAMBURU, C.; SHASHUA, R. Thermal Decomposition of 2,5Dimethylfuran. Experimental Results and Computer Modeling. J. Phys. Chem. A, v. 102, p. 10655?10670, 1998. LUC-SY, T.; SIRJEAN, B.; GLAUDE, P.; KOHSE-H?INGHAUS, K.; BATTIN-LECLERC, F. Influence of substituted furans on the formation of Polycyclic Aromatic Hydrocarbons in flames. Proc. Combust.,http://dx.doi.org/10.1016/j.proci.2014.06.137, 2014. OLIVEIRA, R. C. M.; BAUERFELDT, G. F. International Journal of Quantum Chemistry, 2012, 112, 3132-3140. 60 ROM?N-LESHKOV, Y.; BARRETT, C. J.;.LIU, Z. Y.; DUMESIC, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, v. 447, p. 982-986, 2007. SIMMIE, J. M.; CURRAN, H. J. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known? J. Phys. Chem. A., v. 113, p. 5128?5137, 2009. SIMMIE, J. M.; METCALFE, W. K. Ab Initio Study of the Decomposition of 2,5Dimethylfuran. J. Phys. Chem. A, v. 115, p. 8877?8888, 2011. SIRJEAN, B.; FOURNET, R. Unimolecular decomposition of 2,5-dimethylfuran : a theoretical chemical kinetic study. Phys. Chem. Chem. Phys., v. 15, p. 596?611, 2013. SIRJEAN, B.; FOURNET, R.; GLAUDE, P.; BATTIN-LECLERC, F.; WANG, W.; OEHLSCHLAEGER, M. A. Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran. J. Phys. Chem. A, v. 117, p. 1371-1392, 2013. SOMERS, K. P.; SIMMIE, J. M.; GILLESPIE, F.; CONROY, C.; BLACK, G.; METCALFE, W. K.; BATTIN-LECLERC, F.; DIRRENBERGER, P.; HERBINET, O. ; GLAUDE, P. A.; DAGAUT, P.; TOGB?, C.; YASUNAGA, K.; FERNANDES, R. X.; LEE, C.; TRIPATHI, R.; CURRAN, H. J. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013. STEINFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. Upper Saddle River. Prentice Hall, 2nd ed, 1998.560 p. THANANATTHANACHON, T.; RAUCHFUSS, T. B. Efficient Production of the Liquid Fuel 2,5- Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angew. Chem. Int. Ed., v. 49, p. 6616-6618, 2010. 61 TOGB?, C.; TRAN, L.; LIU, D.; FELSMANN. D.; O?WALD, P.; GLAUDE, P.; SIRJEAN, B.; FOURNET, R.; BATTIN-LECLERC, F.; KOHSE-H?INGHAUS, K. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography ? Part III: 2,5-Dimethylfuran. Combustion and Flame, 2013. TRUHLAR, D. G.; GARRETT, B. C. Variational Transition State Theory. Annual Review of Physical Chemistry, ,v. 35, p. 159-189, 1984. WOON, D. E.; DUNNING JR., T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys., v. 98, p. 1358-1371, 1993. YANG, P.; CUI, Q.; ZU, Y.; LIU, X.; LU, G.; WANG, Y. Catalytic production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ni/Co3O4 catalyst. Catalysis Communications, vol. 66, p. 55-59, 2015. YOUNG, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York. John Wiley & Sons, 2011. 370 p. ISBN: 0-471-33368-9. ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account, v. 120, p. 215-241, 2008. ZHANG, W.; DU, B.; MU, L.; FENG, C. Computational study on the mechanism for the reaction of OH with 2-methylfuran. J. Mol. Struct., v. 851 (1-3), p. 353?357, 2008.

Page generated in 0.0035 seconds