Mes travaux concernent deux systèmes d’équations utilisés dans la modélisation mathématique de semi-conducteurs et de plasmas : le système d’Euler-Poisson et le système d’Euler-Maxwell. Le premier système est constitué des équations d’Euler pour la conservation de la masse et de la quantité de mouvement couplées à l’équation de Poisson pour le potentiel électrostatique. Le second système décrit le phénomène d’électro-magnétisme. C’est un système couplé, qui est constitué des équations d’Euler pour la conservation de la masse et de la quantité de mouvement et les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz. Les équations de Maxwell sont dues aux lois fondamentales de la physique. Elles constituent les postulats de base de l’électromagnétisme, avec l’expression de la force électromagnétique de Lorentz. En utilisant une technique de développement asymptotique, nous étudions les limites en zéro du système d’Euler-Poisson dans les modèles unipolaire et bipolaire. Il est bien connu que la limite formelle du système d’Euler-Poisson est gouvernée par les équations de dérive-diffusion lorsque le temps de relaxation tend vers zéro. Par des estimations d’énergie aux systèmes hyperboliques symétriques, nous justifions rigoureusement cette limite lorsque les conditions initiales sont bien préparées. Le phénomène des conditions initiales mal préparées est interprété par l’apparition de couches initiales. Dans ce cas, nous faisons une analyse mathématique de ces couches initiales en ajoutant des termes de correction dans le développement asymptotique. En utilisant les techniques itératives des systèmes hyperboliques symétrisables et la technique de développement asymptotique, nous étudions la limite de relaxation en zéro du système d’Euler-Maxwell, avec des conditions initiales bien préparées ainsi que l’étude des couches initiales, dans le modèle évolutif bipolaire et unipolaire. / My work is concerned with two different systems of equations used in the mathematical modeling of semiconductors and plasmas : the Euler-Poisson system and the Euler-Maxwell system. The first is given by the Euler equations for the conservation of the mass and momentum, with a Poisson equation for the electrostatic potential. The second system describes the phenomenon of electromagnetism. It is given by the Euler equations for the conservation of the mass and momentum, with a Maxwell equations for the electric field and magnetic field which are coupled to the electron density through the Maxwell equations and act on electrons via the Lorentz force. Using an asymptotic expansion method, we study the zero relaxation limit of unipolar Euler-Poisson system and of two-fluid multidimensional Euler-Poisson equations, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimate. By employing the classical energy estimate for symmetrizable hyperbolic equations, we justify rigorously the convergence of Euler-Poisson system with well-prepared initial data. For ill-prepared initial data, the phenomenon of initial layers occurs. In this case, we also add the correction terms in the asymptotic expansion. Using an iterative method of symmetrizable hyperbolic systems and asymptotic expansion method, we study the zero-relaxation limit of unipolar and bipolar Euler-Maxwell system. For well-prepared initial data, we construct an approximate solution by an asymptotic expansion up to any order. For ill-prepared initial data, we also construct initial layer corrections in the asymptotic expansion.
Identifer | oai:union.ndltd.org:theses.fr/2012CLF22233 |
Date | 29 March 2012 |
Creators | Hajjej, Mohamed Lasmer |
Contributors | Clermont-Ferrand 2, Peng, Yue-Jun |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds