La modélisation à échelle fine de la réaction sodium-eau est motivée par ses applications aux réacteurs nucléaires à neutrons rapides refroidis au sodium et aux réacteurs expérimentaux. La littérature indique que le contact entre le sodium liquide et l’eau donne naissance à un film gazeux où la réaction se produit sous la forme d’une flamme de diffusion gazeuse. Dans ce manuscrit, nous avons choisi de nous focaliser sur la combustion d’une goutte de sodium liquide immergée dans un volume infini d’eau. Plusieurs hypothèses simplificatrices sont introduites : en particulier, nous nous limitons au problème uni-dimensionnel. En supposant que le film gazeux a une masse volumique constante, une étude analytique révèle que l’état physique de l’hydroxyde de sodium a une forte influence sur le comportement du système : si la soude est entièrement gazeuse, la flamme s’éteint, tandis que si elle est entièrement condensée, une solution auto-similaire peut être exhibée et la combustion est entretenue. Un algorithme numérique est développé. Le modèle précédent est ensuite amélioré par la prise en compte de la compressibilité du film. Nous développons un algorithme bas Mach. Les calculs montrent que le film a un comportement oscillant, du fait de l’inertie de l’eau. Les taux de réaction calculés sont en bon accord avec les mesures d’Ashworth. Les conditions initiales dans le film sont inconnues : un mécanisme simplifié de formation du film est donc proposé, et une étude de sensibilité aux conditions initiales est effectuée. Les résultats ne dépendent que faiblement de l’état initial du système. / The fine-scale modeling of sodium-water reaction is motivated by its applications to sodium-cooled fast nuclear reactors and experimental irradiation reactors. As shown by several experiments from the literature, the contact between liquid sodium and water gives rise to a gaseous film where the reaction takes place in the form of a gaseous diffusion flame. In this manuscript, we have chosen to focus on the combustion of a liquid sodium drop immersed in an infinite volume of water. Several simplifying assumptions are introduced : in particular, we limit ourselves to the one-dimensional problem.Assuming the gaseous film has constant density, an analytical study shows that the physical state of sodium hydroxide has a strong influence on the behavior of the system : if soda is entirely vaporized, the flame gets choked, while, on the opposite, if it is entirely condensed, a self-similar solution can be exhibited and the combustion is sustained. A numerical algorithm is developed.Then, the previous model is improved by taking into account the gas compressibility. We develop a low Mach number algorithm. The computations show an oscillatory behavior of the one-dimensional film, due to the inertia of water. The calculated reaction rates are found to be in good agreement with Ashworth’s measurements. Initial conditions in the film are unknown : a simplified mechanism of film formation is therefore proposed, and a sensitivity analysis on initial conditions is carried out. The results are seen to be only slightly dependent on the initial state of the system.
Identifer | oai:union.ndltd.org:theses.fr/2014PA066343 |
Date | 03 November 2014 |
Creators | Marfaing, Olivier |
Contributors | Paris 6, Beccantini, Alberto, Monavon, Arnault |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds