Characteristic westerly sea breeze carries air over the Los Angeles Basin in Southern California to the Inland Empire approximately 50 miles inland, directly impacting air quality in both of these two highly polluted regions. As particles play a critical role in air quality and human health, this study compares the bulk aerosol profiles of the Los Angeles pollution "source" and Inland Empire "receptor" regions during the 2013 and 2014 NASA Student Airborne Research Program (SARP) campaigns onboard the NASA DC-8 airborne laboratory. The source and receptor regions were characterized by a series of missed approaches at the Los Angeles International Airport, Long Beach Airport, and Los Alamitos Army Airfield (coastal sources) as well as the Ontario International Airport, San Bernardino International Airport, and March Air Reserve Base (inland receptors). The aerosol populations in each region were compared, and the changes evolved were analyzed alongside volatile organic compound (VOC) concentrations from Whole Air Samples. Particle size distributions were collected using a Droplet Measurement Technologies Ultra High Sensitivity Aerosol Spectrometer (DMT-UHSAS). Aerosol concentration, mass, and mode diameter increased significantly between coastal pollution source and inland pollution receptor regions in all cases, along with an increase in mode diameter. The observed changes cannot be accounted for by aerosol aging over the Los Angeles basin alone, suggesting new particle emission/formation over this region could be a dominating factor in the changes. Positive correlations between particle increases at receptor sites and anthropogenic VOC tracers will be discussed.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:scripps_theses-1578 |
Date | 01 January 2015 |
Creators | Wu, Taia Sean |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Scripps Senior Theses |
Rights | © 2014 Taia Sean Wu, default |
Page generated in 0.0029 seconds