Le diabète de type 2 (DT2) est caractérisé par une résistance des tissus périphériques à l’action de l’insuline et par une insuffisance de la sécrétion d’insuline par les cellules β du pancréas. Différents facteurs tels que le stress du réticulum endoplasmique (RE) et l’immunité innée affectent la fonction de la cellule β-pancréatique. Toutefois, leur implication dans la régulation de la transcription du gène de l’insuline demeure imprécise. Le but de cette thèse était d’identifier et de caractériser le rôle du stress du RE et de l’immunité innée dans la régulation de la transcription du gène de l’insuline.
Les cellules β-pancréatiques ont un RE très développé, conséquence de leur fonction spécialisée de biosynthèse et de sécrétion d’insuline. Cette particularité les rend très susceptible au stress du RE qui se met en place lors de l’accumulation de protéines mal repliées dans la lumière du RE. Nous avons montré qu’ATF6 (de l’anglais, activating transcription factor 6), un facteur de transcription impliqué dans la réponse au stress du RE, lie directement la boîte A5 de la région promotrice du gène de l’insuline dans les îlots de Langerhans isolés de rat. Nous avons également montré que la surexpression de la forme active d’ATF6α, mais pas ATF6β, réprime l’activité du promoteur de l’insuline. Toutefois, la mutation ou l’absence de la boîte A5 ne préviennent pas l’inhibition de l’activité promotrice du gène de l’insuline par ATF6. Ces résultats montrent qu’ATF6 se lie directement au promoteur du gène de l’insuline, mais que cette liaison ne semble pas contribuer à son activité répressive.
Il a été suggéré que le microbiome intestinal joue un rôle dans le développement du DT2. Les patients diabétiques présentent des concentrations plasmatiques élevées de lipopolysaccharides (LPS) qui affectent la fonction de la cellule β-pancréatique. Nous avons montré que l’exposition aux LPS entraîne une réduction de la transcription du gène de l’insuline dans les îlots de Langerhans de rats, de souris et humains. Cette répression du gène de l’insuline par les LPS est associée à une diminution des niveaux d’ARNms de gènes clés de la cellule β-pancréatique, soit PDX-1 (de l’anglais, pancreatic duodenal homeobox 1) et MafA (de l’anglais, mammalian homologue of avian MafA/L-Maf). En utilisant un modèle de souris déficientes pour le récepteur TLR4 (de l’anglais, Toll-like receptor), nous avons montré que les effets délétères des LPS sur l’expression du gène de l’insuline sollicitent le récepteur de TLR4. Nous avons également montré que l’inhibition de la voie NF-kB entraîne une restauration des niveaux messagers de l’insuline en réponse à une exposition aux LPS dans les îlots de Langerhans de rat. Ainsi, nos résultats montrent que les LPS inhibent le gène de l’insuline dans les cellules β-pancréatiques via un mécanisme moléculaire dépendant du récepteur TLR4 et de la voie NF-kB. Ces observations suggèrent ainsi un rôle pour le microbiome intestinal dans la fonction de la cellule β du pancréas.
Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la répression du gène de l'insuline en réponse aux divers changements survenant de façon précoce dans l’évolution du diabète de type 2 et d'identifier des cibles thérapeutiques potentielles qui permettraient de prévenir ou ralentir la détérioration de l'homéostasie glycémique au cours de cette maladie, qui affecte plus de deux millions de Canadiens. / Type 2 diabetes is characterized by insulin resistance and impaired insulin secretion from the pancreatic β-cell. Endoplasmic reticulum (ER) stress and innate immunity have both been reported to alter pancreatic β-cell function. However, it is not clear whether these factors can affect the transcription of the insulin gene. The aim of this thesis was to assess the role of ER stress and innate immunity in the regulation of the insulin gene.
Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) due to their highly specialized secretory function to produce insulin in response to glucose and nutrients. In a first study, using several approaches we showed that ATF6 (activating transcription factor 6), a protein implicated in the ER stress response, directly binds to the A5/Core of the insulin gene promoter in isolated rat islets. We also showed that overexpression of the active (cleaved) fragment of ATF6α, but not ATF6β, inhibits the activity of an insulin promoter-reporter construct. However, the inhibitory effect of ATF6α was insensitive to mutational inactivation or deletion of the A5/Core. Therefore, although ATF6 binds directly to the A5/Core of the rat insulin II gene promoter, this direct binding does not appear to contribute to its repressive activity.
In recent years, the gut microbiota was proposed has an environmental factor increasing the risk of type 2 diabetes. Subjects with diabetes have higher circulating levels of lipopolysaccharides (LPS) than non-diabetic patients. Recent observations suggest that the signalling cascade activated by LPS binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. We showed that exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of two key transcription factors of the insulin gene, PDX-1 (pancreatic duodenal homeobox 1) and MafA (mammalian homologue of avian MafA/L-Maf). LPS repression of insulin, PDX-1 and MafA expression was not observed in islets from TLR4-deficient mice and was completely prevented in rat islets by inhibition of the NF-kB signalling pathway. These results demonstrate that LPS inhibits β-cell gene expression in a TLR4-dependent manner and via NF-kB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.
Our findings provide a better understanding of the molecular mechanisms underlying insulin gene repression in type 2 diabetes, and suggest potential therapeutic targets that might prevent or delay the decline of β-cell function in the course of type 2 diabetes, which affects more than two million Canadians.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/6961 |
Date | 12 1900 |
Creators | Amyot, Julie |
Contributors | Poitout, Vincent |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.003 seconds