• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de l'inflammasome NLRP3 dans l'athérosclérose et le diabète de type 2 / NLRP3 inflammasome role in atherosclerosis and type 2 diabetes mellitus

Abderrazak, Amna 21 September 2015 (has links)
L’inflammasome NLRP3, un complexe protéique pro-inflammatoire, joue un rôle essentiel dans le processus pathologique de l’athérosclérose et du diabète de type 2 (DT2). Il est responsable de la maturation de la pro-IL-1β et de la pro-IL-18 respectivement en IL-1β et IL-18 biologiquement actives. L’objectif de cette étude consiste à identifier et caractériser un inhibiteur spécifique de l’inflammasome NLRP3 qui pourrait contribuer à limiter l’évolution des plaques d’athérome et l’installation du DT2. Au cours de cette thèse, nous avons isolé l’Arglabine d’une plante, Artemisia glabella, connue pour ses vertus anti-tumorales. L’effet de l’Arglabine a été étudié au niveau des macrophages et des cellules β-pancréatiques, et chez des souris ApoE2.Ki et ApoE2.Ki/NLRP3-/- placées sous régime High Fat Diet (HFD). Les résultats in vitro montrent que l’Arglabine réduit, d’une façon dose-dépendante, l’activité de l’inflammasome NLRP3 et inhibe l’expression des protéines Nlrp3, IL-1β et caspase-1. Elle induit l’autophagie en augmentant significativement l’expression de la LC3-II au niveau des macrophages murins en culture. L’injection intra-péritonéale de deux doses journalières d’Arglabine (2.5 ng/g de m.c.) à des souris ApoE2.Ki placées sous régime HFD, normalise le profil lipidique et réduit l’oxydation des LDL au niveau du plasma des souris. Elle réduit le nombre des monocytes pro-inflammatoires (Ly-6Chigh) et augmente le nombre des monocytes anti-inflammatoires (Ly-6Clow). Au niveau des lésions artérielles, l’Arglabine oriente les macrophages présents vers un phénotype anti-inflammatoire M2. L’ensemble de ces résultats montre un rôle athéroprotecteur de l’Arglabine : elle réduit la surface des lésions artérielles au niveau du sinus aortique ainsi qu’au niveau de la totalité de l’aorte des souris ApoE2.Ki placées sous régime athérogène. De plus, le traitement par l’Arglabine normalise le profil glycémique et insulinémique des souris ApoE2.Ki. Elle réduit également l’activité de la caspase 3 au niveau des îlots de Langerhans et augmente de manière dose-dépendante l’expression de la protéine Bcl-2 au niveau des cellules β-pancréatiques. Par ailleurs, nous avons montré une augmentation de l’expression de protéines impliquées dans l’autophagie telles que la Becline 1 et la LC3-II sous l’effet de l’Arglabine. Ainsi, l’Arglabine réduit non seulement l’activité de l’inflammasome NLRP3 mais améliore aussi la survie des cellules β-pancréatiques. L’Arglabine constitue donc une molécule très prometteuse dans le traitement des maladies cardiovasculaires et le DT2. / The NLRP3 inflammasome activity is abnormally elevated in many human inflammatory diseases, including cardiovascular and metabolic diseases such as atherosclerosis and type 2 diabetes mellitus (T2DM) respectively. Therefore, there is considerable interest in the identification of effective therapeutics that selectively inhibit the NLRP3 inflammasome pathway. In this study, we have identified Arglabin as a potential small molecule inhibitor that targets the NLRP3 inflammasome activity in cell culture and in an animal model, the ApoE2.Ki mice fed a high-fat Western-type diet (HFD). Arglabin, a plant sesquiterpene lactone, has been used extensively as an herbal remedy that proved effective in treating cancer of the liver, lungs and breast at early stages. Arglabin inhibited, in a concentration-dependent manner, IL-1β and IL-18 production in lipopolysaccharide and cholesterol crystal-activated cultured mouse peritoneal macrophages. In addition, Arglabin activated autophagy as evidenced by the increase in LC3-II protein. Intraperitoneal injection of Arglabin (2.5 ng/g body weight twice daily for 13 weeks) into female ApoE2.Ki mice fed a HFD resulted in a decreased IL-1β plasma level and reduced plasma levels of total cholesterol and triglycerides. Treatment of ApoE2.Ki mice fed a HFD with Arglabin significantly reduced the plasma concentration of anti-oxLDL antibodies. Moreover, Arglabin oriented the proinflammatory M1 macrophages into the anti-inflammatory M2 phenotype in spleen and arterial lesions. Consequently, a marked reduction in atherosclerotic lesions was observed in the median areas in the sinus and whole aorta. In comparison to vehicle-treated mice, Arglabin reduced plasma levels of glucose and insulin. Immunohistochemical analysis revealed the presence of active caspase 3 in Langerhans islets of ApoE2.Ki mice fed a HFD that was significantly inhibited by Arglabin treatment. Moreover, Arglabin reduced susceptibility to apoptosis in cultured INS-1 cells by increasing concentration-dependently Bcl-2 levels, which led to concomitantly decreased Bax/Bcl-2 ratio. In cultured INS-1 cells, Arglabin increased the expression of the autophagic markers Becline 1 and LC3-II in a concentration-dependent manner. Consequently, our results indicate survival-promoting properties of the Arglabin molecule in pancreatic β-cells.In conclusion, our findings demonstrate that Arglabin may represent a promising new drug to treat atherosclerosis and T2DM.
2

Rôles des facteurs de croissance dans la prolifération de la cellule β-pancréatique en réponse à un excès de nutriments : étude du facteur de croissance HB-EGF et du récepteur à l’EGF

Benterki, Isma 04 1900 (has links)
Le diabète de type 2 (DT2) résulte d’une résistance à l’insuline par les tissus périphériques et par un défaut de sécrétion de l’insuline par les cellules β-pancréatiques. Au fil du temps, la compensation des îlots de cellules β pour la résistance à l’insuline échoue et entraine par conséquent une baisse progressive de la fonction des cellules β. Plusieurs facteurs peuvent contribuer à la compensation de la cellule β. Toutefois, la compréhension des mécanismes cellulaires et moléculaires sous-jacents à la compensation de la masse de la cellule β reste à ce jour inconnue. Le but de ce mémoire était d’identifier précisément quel mécanisme pouvait amener à la compensation de la cellule β en réponse à un excès de nutriments et plus précisément à l’augmentation de sa prolifération et de sa masse. Ainsi, avec l’augmentation de la résistance à l’insuline et des facteurs circulants chez les rats de six mois perfusés avec du glucose et de l’intralipide, l’hypothèse a été émise et confirmée lors de notre étude que le facteur de croissance HB-EGF active le récepteur de l’EGF et des voies de signalisations subséquentes telles que mTOR et FoxM1 impliquées dans la prolifération de la cellule β-pancréatique. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la compensation de la masse de la cellule β dans un état de résistance à l’insuline et peuvent servir de nouvelles approches thérapeutiques pour prévenir ou ralentir le développement du DT2. / Type 2 diabetes (T2D) results from insulin resistance in peripheral tissues and impaired insulin secretion from the pancreatic β-cell. Over the time, compensation of the β cell islets for insulin resistance fails, and therefore leads to a gradual decline in β-cell function. Several factors may contribute to β-cell compensation. However, the cellular and molecular mechanisms underlying β-cell compensation remain unknown. The purpose of this thesis was to identify what mechanism could lead to β cell compensation in response to nutrients excess and specifically the increase in proliferation and β-cell mass. Thus, with increasing insulin resistance and circulating factors in the 6 month rats infused with glucose + intralipid, the hypothesis was made and confirmed in our study that the growth factor HB-EGF would activate the EGF receptor, and subsequent signaling pathways such as mTOR and FoxM1, both involved in the proliferation of the pancreatic beta-cell. Collectively, these results allow us to understand better the molecular mechanisms involved in the β cell compensation in the insulin resistance state and may serve as a potential new therapeutic approach to prevent or delay T2D development.
3

Rôles du stress du réticulum endoplasmique et de l'immunité innée dans l'inhibition de la transcription du gène de l'insuline : étude du facteur de transcription ATF6 et du récepteur TLR4

Amyot, Julie 12 1900 (has links)
Le diabète de type 2 (DT2) est caractérisé par une résistance des tissus périphériques à l’action de l’insuline et par une insuffisance de la sécrétion d’insuline par les cellules β du pancréas. Différents facteurs tels que le stress du réticulum endoplasmique (RE) et l’immunité innée affectent la fonction de la cellule β-pancréatique. Toutefois, leur implication dans la régulation de la transcription du gène de l’insuline demeure imprécise. Le but de cette thèse était d’identifier et de caractériser le rôle du stress du RE et de l’immunité innée dans la régulation de la transcription du gène de l’insuline. Les cellules β-pancréatiques ont un RE très développé, conséquence de leur fonction spécialisée de biosynthèse et de sécrétion d’insuline. Cette particularité les rend très susceptible au stress du RE qui se met en place lors de l’accumulation de protéines mal repliées dans la lumière du RE. Nous avons montré qu’ATF6 (de l’anglais, activating transcription factor 6), un facteur de transcription impliqué dans la réponse au stress du RE, lie directement la boîte A5 de la région promotrice du gène de l’insuline dans les îlots de Langerhans isolés de rat. Nous avons également montré que la surexpression de la forme active d’ATF6α, mais pas ATF6β, réprime l’activité du promoteur de l’insuline. Toutefois, la mutation ou l’absence de la boîte A5 ne préviennent pas l’inhibition de l’activité promotrice du gène de l’insuline par ATF6. Ces résultats montrent qu’ATF6 se lie directement au promoteur du gène de l’insuline, mais que cette liaison ne semble pas contribuer à son activité répressive. Il a été suggéré que le microbiome intestinal joue un rôle dans le développement du DT2. Les patients diabétiques présentent des concentrations plasmatiques élevées de lipopolysaccharides (LPS) qui affectent la fonction de la cellule β-pancréatique. Nous avons montré que l’exposition aux LPS entraîne une réduction de la transcription du gène de l’insuline dans les îlots de Langerhans de rats, de souris et humains. Cette répression du gène de l’insuline par les LPS est associée à une diminution des niveaux d’ARNms de gènes clés de la cellule β-pancréatique, soit PDX-1 (de l’anglais, pancreatic duodenal homeobox 1) et MafA (de l’anglais, mammalian homologue of avian MafA/L-Maf). En utilisant un modèle de souris déficientes pour le récepteur TLR4 (de l’anglais, Toll-like receptor), nous avons montré que les effets délétères des LPS sur l’expression du gène de l’insuline sollicitent le récepteur de TLR4. Nous avons également montré que l’inhibition de la voie NF-kB entraîne une restauration des niveaux messagers de l’insuline en réponse à une exposition aux LPS dans les îlots de Langerhans de rat. Ainsi, nos résultats montrent que les LPS inhibent le gène de l’insuline dans les cellules β-pancréatiques via un mécanisme moléculaire dépendant du récepteur TLR4 et de la voie NF-kB. Ces observations suggèrent ainsi un rôle pour le microbiome intestinal dans la fonction de la cellule β du pancréas. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la répression du gène de l'insuline en réponse aux divers changements survenant de façon précoce dans l’évolution du diabète de type 2 et d'identifier des cibles thérapeutiques potentielles qui permettraient de prévenir ou ralentir la détérioration de l'homéostasie glycémique au cours de cette maladie, qui affecte plus de deux millions de Canadiens. / Type 2 diabetes is characterized by insulin resistance and impaired insulin secretion from the pancreatic β-cell. Endoplasmic reticulum (ER) stress and innate immunity have both been reported to alter pancreatic β-cell function. However, it is not clear whether these factors can affect the transcription of the insulin gene. The aim of this thesis was to assess the role of ER stress and innate immunity in the regulation of the insulin gene. Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) due to their highly specialized secretory function to produce insulin in response to glucose and nutrients. In a first study, using several approaches we showed that ATF6 (activating transcription factor 6), a protein implicated in the ER stress response, directly binds to the A5/Core of the insulin gene promoter in isolated rat islets. We also showed that overexpression of the active (cleaved) fragment of ATF6α, but not ATF6β, inhibits the activity of an insulin promoter-reporter construct. However, the inhibitory effect of ATF6α was insensitive to mutational inactivation or deletion of the A5/Core. Therefore, although ATF6 binds directly to the A5/Core of the rat insulin II gene promoter, this direct binding does not appear to contribute to its repressive activity. In recent years, the gut microbiota was proposed has an environmental factor increasing the risk of type 2 diabetes. Subjects with diabetes have higher circulating levels of lipopolysaccharides (LPS) than non-diabetic patients. Recent observations suggest that the signalling cascade activated by LPS binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. We showed that exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of two key transcription factors of the insulin gene, PDX-1 (pancreatic duodenal homeobox 1) and MafA (mammalian homologue of avian MafA/L-Maf). LPS repression of insulin, PDX-1 and MafA expression was not observed in islets from TLR4-deficient mice and was completely prevented in rat islets by inhibition of the NF-kB signalling pathway. These results demonstrate that LPS inhibits β-cell gene expression in a TLR4-dependent manner and via NF-kB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function. Our findings provide a better understanding of the molecular mechanisms underlying insulin gene repression in type 2 diabetes, and suggest potential therapeutic targets that might prevent or delay the decline of β-cell function in the course of type 2 diabetes, which affects more than two million Canadians.
4

Rôles du stress du réticulum endoplasmique et de l'immunité innée dans l'inhibition de la transcription du gène de l'insuline : étude du facteur de transcription ATF6 et du récepteur TLR4

Amyot, Julie 12 1900 (has links)
Le diabète de type 2 (DT2) est caractérisé par une résistance des tissus périphériques à l’action de l’insuline et par une insuffisance de la sécrétion d’insuline par les cellules β du pancréas. Différents facteurs tels que le stress du réticulum endoplasmique (RE) et l’immunité innée affectent la fonction de la cellule β-pancréatique. Toutefois, leur implication dans la régulation de la transcription du gène de l’insuline demeure imprécise. Le but de cette thèse était d’identifier et de caractériser le rôle du stress du RE et de l’immunité innée dans la régulation de la transcription du gène de l’insuline. Les cellules β-pancréatiques ont un RE très développé, conséquence de leur fonction spécialisée de biosynthèse et de sécrétion d’insuline. Cette particularité les rend très susceptible au stress du RE qui se met en place lors de l’accumulation de protéines mal repliées dans la lumière du RE. Nous avons montré qu’ATF6 (de l’anglais, activating transcription factor 6), un facteur de transcription impliqué dans la réponse au stress du RE, lie directement la boîte A5 de la région promotrice du gène de l’insuline dans les îlots de Langerhans isolés de rat. Nous avons également montré que la surexpression de la forme active d’ATF6α, mais pas ATF6β, réprime l’activité du promoteur de l’insuline. Toutefois, la mutation ou l’absence de la boîte A5 ne préviennent pas l’inhibition de l’activité promotrice du gène de l’insuline par ATF6. Ces résultats montrent qu’ATF6 se lie directement au promoteur du gène de l’insuline, mais que cette liaison ne semble pas contribuer à son activité répressive. Il a été suggéré que le microbiome intestinal joue un rôle dans le développement du DT2. Les patients diabétiques présentent des concentrations plasmatiques élevées de lipopolysaccharides (LPS) qui affectent la fonction de la cellule β-pancréatique. Nous avons montré que l’exposition aux LPS entraîne une réduction de la transcription du gène de l’insuline dans les îlots de Langerhans de rats, de souris et humains. Cette répression du gène de l’insuline par les LPS est associée à une diminution des niveaux d’ARNms de gènes clés de la cellule β-pancréatique, soit PDX-1 (de l’anglais, pancreatic duodenal homeobox 1) et MafA (de l’anglais, mammalian homologue of avian MafA/L-Maf). En utilisant un modèle de souris déficientes pour le récepteur TLR4 (de l’anglais, Toll-like receptor), nous avons montré que les effets délétères des LPS sur l’expression du gène de l’insuline sollicitent le récepteur de TLR4. Nous avons également montré que l’inhibition de la voie NF-kB entraîne une restauration des niveaux messagers de l’insuline en réponse à une exposition aux LPS dans les îlots de Langerhans de rat. Ainsi, nos résultats montrent que les LPS inhibent le gène de l’insuline dans les cellules β-pancréatiques via un mécanisme moléculaire dépendant du récepteur TLR4 et de la voie NF-kB. Ces observations suggèrent ainsi un rôle pour le microbiome intestinal dans la fonction de la cellule β du pancréas. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la répression du gène de l'insuline en réponse aux divers changements survenant de façon précoce dans l’évolution du diabète de type 2 et d'identifier des cibles thérapeutiques potentielles qui permettraient de prévenir ou ralentir la détérioration de l'homéostasie glycémique au cours de cette maladie, qui affecte plus de deux millions de Canadiens. / Type 2 diabetes is characterized by insulin resistance and impaired insulin secretion from the pancreatic β-cell. Endoplasmic reticulum (ER) stress and innate immunity have both been reported to alter pancreatic β-cell function. However, it is not clear whether these factors can affect the transcription of the insulin gene. The aim of this thesis was to assess the role of ER stress and innate immunity in the regulation of the insulin gene. Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) due to their highly specialized secretory function to produce insulin in response to glucose and nutrients. In a first study, using several approaches we showed that ATF6 (activating transcription factor 6), a protein implicated in the ER stress response, directly binds to the A5/Core of the insulin gene promoter in isolated rat islets. We also showed that overexpression of the active (cleaved) fragment of ATF6α, but not ATF6β, inhibits the activity of an insulin promoter-reporter construct. However, the inhibitory effect of ATF6α was insensitive to mutational inactivation or deletion of the A5/Core. Therefore, although ATF6 binds directly to the A5/Core of the rat insulin II gene promoter, this direct binding does not appear to contribute to its repressive activity. In recent years, the gut microbiota was proposed has an environmental factor increasing the risk of type 2 diabetes. Subjects with diabetes have higher circulating levels of lipopolysaccharides (LPS) than non-diabetic patients. Recent observations suggest that the signalling cascade activated by LPS binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. We showed that exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of two key transcription factors of the insulin gene, PDX-1 (pancreatic duodenal homeobox 1) and MafA (mammalian homologue of avian MafA/L-Maf). LPS repression of insulin, PDX-1 and MafA expression was not observed in islets from TLR4-deficient mice and was completely prevented in rat islets by inhibition of the NF-kB signalling pathway. These results demonstrate that LPS inhibits β-cell gene expression in a TLR4-dependent manner and via NF-kB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function. Our findings provide a better understanding of the molecular mechanisms underlying insulin gene repression in type 2 diabetes, and suggest potential therapeutic targets that might prevent or delay the decline of β-cell function in the course of type 2 diabetes, which affects more than two million Canadians.
5

Métabolisme du glucose et du glycérol dans la cellule pancréatique β et les hépatocytes et identification des voies de détoxification du glucose

Mugabo, Yves 08 1900 (has links)
No description available.

Page generated in 0.099 seconds