Return to search

Rôle de l'estérification des acides gras dans la régulation de la sécrétion d'insuline et le stress métabolique induits par le glucose

Le diabète est une maladie chronique de l’homéostasie du glucose caractérisée par une hyperglycémie non contrôlée qui est le résultat d’une défaillance de la sécrétion d’insuline en combinaison ou non avec une altération de l’action de l’insuline. La surnutrition et le manque d’activité physique chez des individus qui ont des prédispositions génétiques donnent lieu à la résistance à l’insuline. Pendant cette période dite de compensation où la concentration d’acides gras plasmatiques est élevée, l’hyperinsulinémie compense pleinement pour la résistance à l’insuline des tissus cibles et la glycémie est normale.

Le métabolisme du glucose par la cellule pancréatique bêta entraîne la sécrétion d’insuline. Selon le modèle classique de la sécrétion d’insuline induite par le glucose, l’augmentation du ratio ATP/ADP résultant de la glycolyse et de l’oxydation du glucose, induit la fermeture des canaux KATP-dépendant modifiant ainsi le potentiel membranaire suivi d’un influx de Ca2+. Cet influx de Ca2+ permet l’exocytose des granules de sécrétion contenant l’insuline. Plusieurs nutriments comme les acides gras sont capables de potentialiser la sécrétion d’insuline. Cependant, le modèle classique ne permet pas d’expliquer cette potentialisation de la sécrétion d’insuline par les acides gras.

Pour expliquer l’effet potentialisateur des acides gras, notre laboratoire a proposé un modèle complémentaire où le malonyl-CoA dérivé du métabolisme anaplérotique du glucose inhibe la carnitine palmitoyltransférase-1, l’enzyme qui constitue l’étape limitante de l’oxydation des acides gras favorisant ainsi leur estérification et donc la formation de dérivés lipidiques signalétiques. Le modèle anaplérotique/lipidique de la sécrétion d'insuline induite par le glucose prédit que le malonyl-CoA dérivé du métabolisme du glucose inhibe la bêta-oxydation des acides gras et augmente la disponibilité des acyl-CoA ou des acides gras non-estérifiés. Les molécules lipidiques agissant comme facteurs de couplage du métabolisme des acides gras à l'exocytose d'insuline sont encore inconnus.

Des travaux réalisés par notre laboratoire ont démontré qu’en augmentant la répartition des acides gras vers la bêta-oxydation, la sécrétion d’insuline induite par le glucose était réduite suggérant qu’un des dérivés de l’estérification des acides gras est important pour la potentialisation sur la sécrétion d’insuline. En effet, à des concentrations élevées de glucose, les acides gras peuvent être estérifiés d’abord en acide lysophosphatidique (LPA), en acide phosphatidique (PA) et en diacylglycérol (DAG) et subséquemment en triglycérides (TG).

La présente étude a établi l’importance relative du processus d’estérification des acides gras dans la production de facteurs potentialisant la sécrétion d’insuline. Nous avions émis l’hypothèse que des molécules dérivées des processus d’estérification des acides gras (ex : l’acide lysophosphatidique (LPA) et le diacylglycerol (DAG)) agissent comme signaux métaboliques et sont responsables de la modulation de la sécrétion d’insuline en présence d’acides gras. Afin de vérifier celle-ci, nous avons modifié le niveau d’expression des enzymes clés contrôlant le processus d’estérification par des approches de biologie moléculaire afin de changer la répartition des acides gras dans la cellule bêta. L’expression des différents isoformes de la glycérol-3-phosphate acyltransférase (GPAT), qui catalyse la première étape d’estérification des acides gras a été augmenté et inhibé. Les effets de la modulation de l’expression des isoenzymes de GPAT sur les processus d’estérifications, sur la bêta-oxydation et sur la sécrétion d’insuline induite par le glucose ont été étudiés.

Les différentes approches que nous avons utilisées ont changé les niveaux de DAG et de TG sans toutefois altérer la sécrétion d’insuline induite par le glucose. Ainsi, les résultats de cette étude n’ont pas associé de rôle pour l’estérification de novo des acides gras dans leur potentialisation de la sécrétion d’insuline. Cependant, l’estérification des acides gras fait partie intégrante d’un cycle de TG/acides gras avec sa contrepartie lipolytique. D’ailleurs, des études parallèles à la mienne menées par des collègues du laboratoire ont démontré un rôle pour la lipolyse et un cycle TG/acides gras dans la potentialisation de la sécrétion d’insuline par les acides gras.

Parallèlement à nos études des mécanismes de la sécrétion d’insuline impliquant les acides gras, notre laboratoire s’intéresse aussi aux effets négatifs des acides gras sur la cellule bêta. La glucolipotoxicité, résultant d’une exposition chronique aux acides gras saturés en présence d’une concentration élevée de glucose, est d’un intérêt particulier vu la prépondérance de l’obésité. L’isoforme microsomal de GPAT a aussi utilisé comme outil moléculaire dans le contexte de la glucolipotoxicité afin d’étudier le rôle de la synthèse de novo de lipides complexes dans le contexte de décompensation où la fonction des cellules bêta diminue.

La surexpression de l’isoforme microsomal de la GPAT, menant à l’augmentation de l’estérification des acides gras et à une diminution de la bêta-oxydation, nous permet de conclure que cette modification métabolique est instrumentale dans la glucolipotoxicité. / Diabetes is a chronic disease of glucose homeostasis characterized by hyperglycemia and the result of a failure of insulin secretion in combination or not with impaired insulin action. Overnutrition and lack of physical activity in individuals who have acquired or inherited genetic predispositions lead to insulin resistance. During the period of compensation where the concentration of plasma fatty acids is high, hyperinsulinemia fully compensates for the insulin resistance of target tissues and blood sugar is normal.

Glucose promotes insulin secretion through its metabolism by the pancreatic β cell. According to the classical model of glucose-induced insulin secretion, the increase in the ATP/ADP ratio resulting from glycolysis and glucose oxidation induces the closure of KATP channels thus changing membrane potential followed by an influx of Ca2+. This influx of Ca2+ allows the exocytosis of secretory granules containing insulin. Several nutrients like fatty acids are capable of potentiating insulin secretion. However, the classical model does not explain the potentiation of insulin secretion by fatty acids.

To explain the potentiating effect of fatty acids, our laboratory has proposed a complementary model in which malonyl-CoA derived from glucose anaplerotic metabolism inhibits carnitine palmitoyltransferase 1, the enzyme catalyzing the limiting step of fatty acid oxidation, thereby promoting their esterification and thus the formation signaling derivatives. The anaplerotic model of insulin secretion predicts that malonyl-CoA derived from glucose metabolism inhibits β-oxidation of fatty acids and increases the availability of acyl-CoA or non esterified fatty acids. Thus, lipid molecules can act as coupling factors for insulin exocytosis. Fatty acid-derived signalling molecules that are active remain to be identified.

Work performed by our laboratory has shown that increasing the partition of fatty acids toward β-oxidation reduced glucose-induced insulin secretion, suggesting that derivatives of fatty acid esterification are important for the potentiation of insulin secretion. Indeed, at high concentrations of glucose, fatty acids are esterified into lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG) and subsequently in triglycerides (TG).

The present study established the relative importance fatty acid esterification in the production of factors potentiating insulin secretion. We hypothesized that molecules derived from the process of esterification of fatty acid (eg lysophosphatidic acid (LPA) and diacylglycerol (DAG)) act as metabolic signals and are responsible for the modulation of the secretion of insulin in the presence of fatty acids. Thus, the level of expression of key enzymes controlling the process of esterification has been altered by molecular biology approaches to increase distribution of fatty acids toward esterification in the β cell. The expression of various isoforms of glycerol-3-phosphate acyltransferase (GPAT), which catalyzes the first step of esterification of fatty acids was increased and inhibited. The effects of GPAT isoenzyme modulation on the esterification process, on β-oxidation and on glucose-induced insulin secretion were investigated.

The various approaches we used have changed the levels of DAG and TG without altering insulin secretion induced by glucose in the presence or absence of fatty acids. Thus, the results of this study do not suggest a role for de novo synthesis of glycerolipid intermidiates via esterification of fatty acids in the potentiation of insulin secretion. However, the esterification of fatty acids is an integral part of a TG/fatty acid cycle with its counterpart lipolysis. Moreover, parallel studies conducted by colleagues of the laboratory have demonstrated a role for lipolysis and a cycle TG/fatty acid in the potentiation of insulin secretion by fatty acids.

In parallel with our studies of the mechanisms of insulin secretion involving fatty acids, our laboratory is also interested in the negative effects of fatty acids on the β cell. The glucolipotoxicity resulting from chronic exposure to saturated fatty acids in the presence of high glucose concentrations is of particular interest in the context of obesity rates. The microsomal isoform of GPAT was also used as a molecular tool under glucolipotoxicity conditions to study the role of de novo synthesis of complex lipids in the context of decompensation when β-cell function decreases.

Increased esterification of fatty acids by the overexpression of microsomal isoform of GPAT has increased the toxic effects of fatty acids in the context of glucolipotoxicity. Thus, our results allow us to conclude that the distribution of lipids toward esterification and a decrease in β-oxidation is instrumental in glucolipotoxicity.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/7063
Date04 1900
CreatorsBarbeau, Annie
ContributorsPrentki, Marc
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0037 seconds