• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of novel mechanisms of glucolipotoxicity in type 2 diabetes

Bagnati, Marta January 2015 (has links)
Type 2 Diabetes, a metabolic disorder associated with chronic hyperglycaemia and hyperlipidaemia, is characterised by an impairment of insulin secretion and production and β-cell death. This β-cell dysfunction is determined by different factors, among which inflammatory processes, characterised by increased expression of pro-inflammatory cytokines and chemokines. Although some molecular mechanisms have been proposed to be involved in this β-cell dysfunction, they fail to explain the whole process. In this thesis, a combined approach of microarray, RNAseq, RT-qPCR and western blot will be used to elucidate the pathways affected under glucolipotoxicity, in order to discover novel molecules involved in the pathogenesis of T2D. We found that INS-1 cells exposed to 27 mM glucose, 200 μM oleic acid, 200 μM palmitic acid, show an overexpression of CD40, a TNF receptor involved in inflammation (more than 300% p<0.01), both at RNA and protein level. These data were validated in cultured human islets (p<0.05) and in islets of mice fed a high fat diet (p<0.05). We showed also that siRNA downregulation of CD40 is associated with increase in insulin secretion (p<0.05), revealing a potential new role of this receptor in β-cells. In addition, RNAseq analysis revealed a wide list of molecules differentially expressed in glucolipotoxicity, in particular molecules involved in inflammation, insulin/IGF pathway, fatty acids-cholesterol metabolism and biosynthesis. We focused our attention on potential novel targets, including the thyroid pathway, unknown microRNAs and novel genes, in order to discover new pathways involved in the impairment of insulin secretion in T2D. This work will open the way to future studies aiming to characterise these molecules and to understand their role in the insulin secretion process. Interesting candidates can then be used in the future as potential targets for the development of new and specific therapeutic strategies.
2

Role of docohexaenoic acid/Elovl2 axis in glucolipotoxicity induced apoptosis and secretory dysfunction in pancreatic β-cells / Rôle de l’axe de l’acide docohexaenoïque/Elovl2 dans l’apoptose et le défaut de sécrétion induits par la glucolipotoxicité dans les cellules β pancréatiques

Bellini, Lara 19 September 2016 (has links)
Le diabète de type II (T2D) est une pathologie caractérisée par une hyperglycémie chronique due au dysfonctionnement ainsi qu’à l’apoptose des cellules β pancréatiques, associée à la résistance à l’action de l’insuline. Dans le cas d’un T2D accompagné d’une obésité, l’hyperglycémie chronique potentialise les effets délétères des acides gras saturés sur la cellule β. Ce phénomène est défini comme étant la gluco-lipotoxicité (GL). Aujourd’hui, peu de cibles thérapeutiques existent afin de contrecarrer les effets de la GL et de traiter/prévenir définitivement le diabète, ceci étant dû en partie au manque de connaissances sur la régulation de la cellule β dans des conditions pathologiques. Dans ce but, le consortium Européen IMIDIA (http://www.imidia.org) a réalisé une analyse multiparamétrique permettant l’identification de gènes exprimés dans les îlots de Langerhans qui sont associés à la tolérance au glucose ainsi que la capacité de l’îlot à sécréter l’insuline chez des souris obèses. Parmi ces gènes, je me suis intéressée au rôle de l’élongase 2 (ELOVL2), enzyme impliquée dans la synthèse d’acides gras ω3-poly-insaturés (PUFAs) et en particulier l’acide docosahexaénoïque (DHA). J’ai pu mettre en évidence que la GL diminue l’expression d’Elovl2 et la quantité de DHA dans les cellules β. J’ai pu montrer que le DHA et la surexpression d’Elovl2 restaurent la sécrétion d’insuline induite par le glucose inhibée par la GL, suggérant qu’une augmentation de la quantité endogène de DHA, via la surexpression d’Elovl2 serait capable de contrecarrer le défaut de sécrétion d’insuline associé à la GL. J’ai pu ensuite montrer qu’une sous-expression d’Elovl2 accroît encore plus l’apoptose des cellules β induite par la GL. Ceci étant contrecarré par une surexpression d’Elovl2 et l’addition de DHA. L’axe Elovl2/DHA diminue drastiquement l’accumulation de céramides, responsable de l’apoptose des cellules β induite par la GL. Néanmoins, cet axe ne semble pas affecter la synthèse de novo. En revanche, l’étomoxir (inhibiteur de l’oxydation des acides gas) inhibe totalement l’effet protecteur de l’axe Elovl2/DHA. Ceci suggère donc que l’axe Elovl2/DHA altère le devenir des acides gras dans la cellule en favorisant la dégradation des acides gras par la β-oxydation afin de protéger la cellule β de l’apoptose. En conclusion, mes résultats ont permis de mettre en évidence le rôle de l’axe Elovl2/DHA dans le disfonctionnement et l’apoptose induits par la GL. L’existence de cet axe pourrait conduire à développer de nouvelles thérapies qui cibleraient la synthèse de DHA afin de protéger la cellule β contre les effets délétères de la GL. Enfin, bien que je me sois focalisée uniquement sur la validation d’Elovl2, la base de données créée au cours de cette étude pour identifier de nouveaux gènes impliqués dans le T2D représente une nouvelle ressource importante pour mieux comprendre la défaillance de la cellule β durant un stress métabolique / Type 2 diabetes (T2D) is a disease characterised by a dysfunction of pancreatic β cell survival and function associated with insulin resistance. In the case of T2D associated with obesity, chronic hyperglycaemia potentiates the deleterious effect of saturated free fatty acids on β cell. This phenomenon is defined as gluco-lipotoxicity (GL). Up to now, limited therapeutic options exist to fight against GL and treat diabetes and none to cure or prevent this disease, in part due to the limited knowledge of β-cell biology in health and disease. To face to the lack of knowledge regarding β cell function in diabetes, the European consortium IMIDIA (http://www.imidia.org) had conducted a multi-parameter analysis that led to the identification of a sub-network of islet-expressed genes associated with glucose tolerance and insulin secretory capacity during development of obesity in mice. Among these genes, I decided to further investigate the role of the very long chain fatty acid elongase 2 (ELOVL2). ELOVL2 is an enzyme involved in the synthesis of ω3-poly-unsaturated fatty acids (PUFAs), especially Docosahexaenoic acid (DHA). I have found that GL decreases Elovl2 expression and DHA levels in β-cells. I showed that DHA and Elovl2 over-expression rescues glucose-induced insulin secretion and cytosolic Ca2+ influx impaired by GL, suggesting that increased endogenous DHA levels resulting from Elovl2 up-regulation counteracts the insulin secretion defect associated with GL. In a second part, I found that down-regulation of Elovl2 drastically potentiates apoptosis induced by GL. In contrast DHA and over-expressed Elovl2 counteract β cell apoptosis induced by GL. Interestingly, I found that ELOVL2/DHA axis inhibits accumulation of ceramide, which normally mediate β cell apoptosis under GL. It appears that ELOVL2/DHA axis did not inhibit enzyme function involved in de novo ceramide synthesis. In contrast, the fat oxidation inhibitor, etomoxir, which markedly enhanced GL-induced cell death, completely inhibits the beneficial effect of ELOVL2/DHA axis. These results suggest that ELOVL2/DHA alter fatty acid partitioning, in favour of mitochondrial fatty acid β-oxydation in order to protect β-cells from apoptosis. Collectively, my results show for the first time a role of the ELOVL2/DHA axis in β-cell dysfunction and apoptosis induced by GL. The existence of this axis could lead to develop new therapies that target DHA synthesis to protect β-cells against the deleterious effect of GL. Finally, although I focus experimental validation on Elovl2, the comprehensive data set and integrative network model used to identify this candidate gene represents an important novel resource to dissect the molecular aetiology of β-cell failure following metabolic stress.
3

Beta-cell basal insulin hypersecretion rescued by lipid lowering methods

Zhang, Xiaotian 31 January 2022 (has links)
OBJECTIVE: The close relationship between obesity and type 2 diabetes (T2D) highlights the fact that most diabetes patients are overweight or obese. We propose that elevated glucose and free fatty acid levels in those patients cause beta-cell dysfunction. Chronic exposure to excess nutrients (glucose and free fatty acid) leads to glucolipotoxicity, characterized by basal insulin hypersecretion, a left-shift in the glucose dose-dependent insulin secretion curve, and blunted glucose-stimulated insulin secretion. One of the suggested reasons for this defect is elevated intracellular lipid. In this study, our objective was to investigate whether reducing beta-cell lipid levels can reverse basal insulin hypersecretion. METHODS: INS-1 (823/13) cells were cultured in 4 or 11 mM glucose media. Elevated glucose and KCl doses were added to cells in the insulin secretion experiments. In the KCl-induced insulin secretion experiment, cells were treated with a combination of 12 mM glucose and 250 μM diazoxide, then assigned to different test concentrations with elevated KCl doses. Insulin release and content were measured by the insulin ultra-sensitive homogenous time-resolved fluorescence (HTRF) kit (Cisbio). Following that, we monitored intracellular Ca2+ activity of KCl-induced insulin secretion on a fluorescence spectrophotometer F-2000 (Hitachi). Additionally, we acutely added Adipo C (20 µM) or fatty acid-free BSA to cells to reduce the lipids levels in the ß-cells. We also stained with Nile Red (Sigma) to examine the intrinsic lipid droplets in those cells. RESULTS: ß-cells cultured in excess nutrients (11 mM glucose) exhibited a left shift in the glucose dose-dependent response curve. The hypersecretion at low glucose could be blocked by the KATP channel activator, diazoxide, indicating that Ca2+ influx drives the increase in secretion at glucose concentrations normally considered basal. Here we extend this left shift to include KCl-induced insulin secretion, supporting a role for Ca2+ in the observed hypersensitivity. KCl-induced Ca2+ influx was also left-shifted. Interestingly, we found acute exposure to Adipo C or fatty acid-free BSA reversed the basal hypersecretion in cells cultured in excess nutrients. CONCLUSION: The work presented in this study provided supporting evidence that ß-cells cultured in excess nutrients were hypersensitive to glucose while extending these studies to KCl-induced insulin release. The excess nutrient-induced left shift in both glucose and KCl-stimulated insulin secretion was mediated by increased Ca2+. Thus, we postulate that excess nutrient exposure increases ß-cell plasma membrane lipids that alter Ca2+ handling to allow increased Ca2+ influx at inappropriate low glucose concentrations. Our results demonstrated that cells acutely exposed to the putative long-chain acyl-CoA synthetase inhibitor Adipo C or fatty acid-free BSA reversed basal insulin hypersecretion and supports a role for lipids mediating the adverse effect. T2D patients with obesity have a similar physiologically elevated fasting blood glucose and lipid. Thus, our findings suggest lowering lipid levels in ß-cells may have therapeutic potential in treating hyperinsulinemia leading to T2D.
4

The effect of simvastatin and pitavastatin on insulin secretion from clonal pancreatic ß-cells (INS-1)

Abdul-Akbar, Princess Maryam 13 February 2024 (has links)
OBJECTIVE: The 10th leading cause of death in the United States is heart disease. Most of the deaths by heart disease has a correlation with an occlusion of the coronary arteries. While diabetes mellitus is currently the 7th leading cause of death, which is a chronic condition that affects more than 37 million people in America. The global epidemic of obesity largely explains the dramatic increase in the incidence and prevalence of type 2 diabetes (T2D) over the past 25 years. Statins are well known drugs to decrease LDL for individuals who suffer from hypercholesterinemia; however, there is also an increased risk of developing diabetes mellitus. An estimation of 10-20 per 10,000 patients per year demonstrated an excess risk of T2D with the long-term use of statin. Here we examine the effects of simvastatin and pitavastatin on pancreatic ß-cell function to determine whether altered insulin secretion may contribute to an increased risk of T2D. METHODS: The experiments were performed using clonal pancreatic ß-cells (INS-1). The cells were grown in 4 mM glucose in RPMI media. Cells were grown for three days before adding the different types of statins: simvastatin and pitavastatin for one day. Then the cells were used to perform the glucose-induced insulin secretion (GSIS) experiment. Insulin secretion and insulin content were assay using a fluorescence-based immunoassay. The study was calculated using Microsoft Excel. Standard variance and standard error were used to assess the difference sets of data. RESULTS: INS-1 cells responded to acute glucose stimulation after chronic culture in both low (4 mM) and high (11 mM) glucose. Secretion from cells cultured at 4 mM glucose was higher than cells cultured at 11 mM glucose at all glucose concentrations tested, characteristic of the effects of glucolipotoxicity (GLT). Insulin content in cells cultured at high glucose was decreased 8.6-fold compared to cells cultured at the more physiological low glucose condition. When normalized to basal secretion cells cultured at high glucose exhibited basal hypersecretion and increased GSIS compared to those in low glucose. Simvastatin (100 nM, 24 hrs) increased basal insulin secretion to a greater extent than Pitavastatin. The effects of pitavastatin on basal insulin secretion were less consistent than seen with simvastatin. Simvastatin was also shown to inhibit GSIS from cells cultured at 4 mM glucose, while pitavastatin increased GSIS. CONCLUSION: Both pitavastatin and simvastatin alter insulin secretion from pancreatic ß-cells. The effect of simvastatin to both increase basal and decrease GSIS, characteristic of GLT suggests pitavastatin may be the statin of choice to reduce the risk of statin-induced T2D.
5

Mitochondrial involvement in pancreatic beta cell glucolipotoxicity

Barlow, Jonathan January 2015 (has links)
High circulating glucose and non-esterified free fatty acid (NEFA) levels can cause pancreatic β-cell failure. The molecular mechanisms of this β-cell glucolipotoxicity are yet to be established conclusively. In this thesis by exploring mitochondrial energy metabolism in INS-1E insulinoma cells and isolated pancreatic islets, a role of mitochondria in pancreatic β-cell glucolipotoxicity is uncovered. It is reported that prolonged palmitate exposure at high glucose attenuates glucose-stimulated mitochondrial respiration which is coupled to ADP phosphorylation. These mitochondrial defects coincide with an increased level of mitochondrial reactive oxygen species (ROS), impaired glucose-stimulated insulin secretion (GSIS) and decreased cell viability. Palmitoleate, on the other hand, does not affect mitochondrial ROS levels or cell viability and protects against the adverse effects of palmitate on these phenotypes. Interestingly, palmitoleate does not significantly protect against mitochondrial respiratory or insulin secretion defects and in pancreatic islets tends to limit these functions on its own. Furthermore, strong evidence suggests that glucolipotoxic-induced ROS are of a mitochondrial origin and these ROS are somehow linked with NEFA-induced loss in cell viability. To explore the mechanism of glucolipotxic-induced mitochondrial ROS and associated cell loss, uncoupling protein-2 (UCP2) protein levels and activity were probed in NEFA exposed INS-1E cells. It is concluded that UCP2 neither mediates palmitate-induced mitochondrial ROS production and the related cell loss, nor protects against these deleterious effects. Instead, UCP2 dampens palmitoleate protection against palmitate toxicity. Collectively, these data shed important new light on the area of glucolipotoxicity in pancreatic β-cells and provide novel insights into the pathogenesis of Type 2 diabetes.
6

Effect of aryl-hydrocarbon receptor activity on lipid accumulation, insulin content and secretion from clonal pancreatic beta-cells

Baghdasarian, Siyouneh 03 July 2018 (has links)
OBJECTIVE: The aryl hydrocarbon receptor (AhR) translocates to the nucleus and binds to the aryl hydrocarbon receptor nuclear translocator (ARNT) to regulate biological responses upon ligand activation. The aim of this study was to measure the effects of activation or inhibition of AhR activity on basal and glucose-stimulated insulin secretion (GSIS) from clonal pancreatic β-cells (INS-1) cultured under normal and glucolipotoxic (GLT) conditions (high glucose and fatty acid). METHODS: Insulin content and secretion were measured utilizing homogenous time-resolved fluorescence (HTRF) insulin assay kit (cisbio). Cells cultured in RPMI media containing 5 mM and 11 mM glucose were pre-incubated with the receptor agonist FICZ or antagonist CH223191 for 96 hours. Insulin secretion over 2 hours was reported as ng/million cells. Intracellular lipid was measured by fluorescence after Nile red staining. RESULTS: Incubation of INS-1 cells with 11 mM glucose and fatty acid increased lipid droplets, basal insulin secretion and inhibited GSIS compared to cells cultured in 4 mM glucose, characteristic of GLT. Incubation of INS-1 cells with 11 mM glucose alone also exhibited GLT characteristics. INS-1 cells cultured at 11 mM glucose and treated with antagonist (1.25 - 10 μM) had decreased lipid content and improved insulin secretion compared to cells cultured in 11 mM glucose alone. INS-1 cells cultured in 5 mM glucose and treated with the AhR agonist (1.25 - 10 μM) exhibited increased intracellular lipid and impaired insulin secretion. CONCLUSION: The AhR may play a mediatory role in the development of GLT in pancreatic β-cells cultured in excess nutrients and β-cell specific activator or inhibitor ligands of this receptor could potentially be a targeted therapeutic treatment of diabetes.
7

Einfluss von Glucolipotoxizität auf die Funktion der β-Zellen diabetessuszeptibler und –resistenter Mausstämme / Effects of glucolipotoxicity on beta-cells of diabetes-susceptible and diabetes-resistant mouse strains

Kluth, Oliver January 2012 (has links)
Ziel der vorliegenden Arbeit war es, die Auswirkungen von Glucose- und Lipidtoxizität auf die Funktion der β-Zellen von Langerhans-Inseln in einem diabetesresistenten (B6.V-Lepob/ob, ob/ob) sowie diabetessuszeptiblen (New Zealand Obese, NZO) Mausmodell zu untersuchen. Es sollten molekulare Mechanismen identifiziert werden, die zum Untergang der β-Zellen in der NZO-Maus führen bzw. zum Schutz der β-Zellen der ob/ob-Maus beitragen. Zunächst wurde durch ein geeignetes diätetisches Regime in beiden Modellen durch kohlenhydratrestriktive Ernährung eine Adipositas(Lipidtoxizität) induziert und anschließend durch Fütterung einer kohlenhydrathaltigen Diät ein Zustand von Glucolipotoxizität erzeugt. Dieses Vorgehen erlaubte es, in der NZO-Maus in einem kurzen Zeitfenster eine Hyperglykämie sowie einen β-Zelluntergang durch Apoptose auszulösen. Im Vergleich dazu blieben ob/ob-Mäuse längerfristig normoglykämisch und wiesen keinen β-Zelluntergang auf. Die Ursache für den β-Zellverlust war die Inaktivierung des Insulin/IGF-1-Rezeptor-Signalwegs, wie durch Abnahme von phospho-AKT, phospho-FoxO1 sowie des β-zellspezifischen Transkriptionsfaktors PDX1 gezeigt wurde. Mit Ausnahme des Effekts einer Dephosphorylierung von FoxO1, konnten ob/ob-Mäuse diesen Signalweg aufrechterhalten und dadurch einen Verlust von β-Zellen abwenden. Die glucolipotoxischen Effekte wurden in vitro an isolierten Inseln beider Stämme und der β-Zelllinie MIN6 bestätigt und zeigten, dass ausschließlich die Kombination hoher Glucose und Palmitatkonzentrationen (Glucolipotoxizität) negative Auswirkungen auf die NZO-Inseln und MIN6-Zellen hatte, während ob/ob-Inseln davor geschützt blieben. Die Untersuchung isolierter Inseln ergab, dass beide Stämme unter glucolipotoxischen Bedingungen keine Steigerung der Insulinexpression aufweisen und sich bezüglich ihrer Glucose-stimulierten Insulinsekretion nicht unterscheiden. Mit Hilfe von Microarray- sowie immunhistologischen Untersuchungen wurde gezeigt, dass ausschließlich ob/ob-Mäuse nach Kohlenhydratfütterung eine kompensatorische transiente Induktion der β-Zellproliferation aufwiesen, die in einer nahezu Verdreifachung der Inselmasse nach 32 Tagen mündete. Die hier erzielten Ergebnisse lassen die Schlussfolgerung zu, dass der β-Zelluntergang der NZO-Maus auf eine Beeinträchtigung des Insulin/IGF-1-Rezeptor-Signalwegs sowie auf die Unfähigkeit zur β- Zellproliferation zurückgeführt werden kann. Umgekehrt ermöglichen der Erhalt des Insulin/IGF-1-Rezeptor-Signalwegs und die Induktion der β-Zellproliferation in der ob/ob-Maus den Schutz vor einer Hyperglykämie und einem Diabetes. / The aim of the project was to investigate the impact of glucose- and fatty acid toxicity on β-cell function in a diabetes susceptible (New Zealand Obese, NZO) and resistant (B6.V-Lepob/ob, ob/ob)mouse model. Specifically, the molecular mechanisms of glucolipotoxicity-induced β-cell failure in the NZO mouse and pathways which contribute to protection of ob/ob mice against diet-induced type 2 diabetes should be elucidated. First, the animals were fed a fat-enriched carbohydrate-free diet which resulted in severe obesity and insulin resistance (lipotoxicity). Subsequently, mice were exposed to a carbohydrate-containing diet to induce conditions of glucolipotoxicity. This sequential dietary regimen provides a convenient method to induce rapid hyperglycaemia with β-cell destruction by apoptosis in a short time frame in NZO mice. In contrast, long-term exposure of ob/ob mice to the same dietary regimen leads to normoglycaemia and a protection against β-cell failure. The molecular mechanism behind carbohydrate-mediated β-cell destruction in NZO mice was an inactivation of the insulin/IGF-1 receptor signaling pathway including loss of phospho-AKT, phospho-FoxO1 and of the β-cell specific transcription factor PDX1. With the exception of FoxO1-dephosphorylation, ob/ob mice maintained this survival pathway and therefore were protected against loss of β-cells. The adverse effects of glucolipotoxicity on β-cells were verified in vitro by treatment of isolated NZO-islets and MIN6-cells under glucolipotoxic conditions. Only the combination of high glucose in the presence of palmitate caused deterioration of NZO-islets and MIN6-cells whereas ob/ob-islets were protected. The investigation of the insulin expression pattern showed, that glucolipotoxic conditions inhibited a glucose-induced increase in insulin expression in both, NZO and ob/ob islets. Furthermore, NZO and ob/ob-islets did not differ in glucose-stimulated insulin secretion. Expression profiling and immunohistochemical analyses of islets from NZO and ob/ob mice before and after carbohydrate intervention revealed a transient induction of a compensatory β-cell proliferation. During a 32 day carbohydrate feeding islet mass of ob/ob mice increased almost 3-fold. In conclusion, β-cell failure in NZO mice was induced via impairment of the insulin/IGF-1 signaling pathway and the inability to adequately increase β-cell mass by proliferation. Conversely, maintenance of the insulin/IGF-1 receptor signaling pathway and the induction of β-cell proliferation protected ob/ob mice against hyperglycaemia and type 2 diabetes.
8

Rôle de l'estérification des acides gras dans la régulation de la sécrétion d'insuline et le stress métabolique induits par le glucose

Barbeau, Annie 04 1900 (has links)
Le diabète est une maladie chronique de l’homéostasie du glucose caractérisée par une hyperglycémie non contrôlée qui est le résultat d’une défaillance de la sécrétion d’insuline en combinaison ou non avec une altération de l’action de l’insuline. La surnutrition et le manque d’activité physique chez des individus qui ont des prédispositions génétiques donnent lieu à la résistance à l’insuline. Pendant cette période dite de compensation où la concentration d’acides gras plasmatiques est élevée, l’hyperinsulinémie compense pleinement pour la résistance à l’insuline des tissus cibles et la glycémie est normale. Le métabolisme du glucose par la cellule pancréatique bêta entraîne la sécrétion d’insuline. Selon le modèle classique de la sécrétion d’insuline induite par le glucose, l’augmentation du ratio ATP/ADP résultant de la glycolyse et de l’oxydation du glucose, induit la fermeture des canaux KATP-dépendant modifiant ainsi le potentiel membranaire suivi d’un influx de Ca2+. Cet influx de Ca2+ permet l’exocytose des granules de sécrétion contenant l’insuline. Plusieurs nutriments comme les acides gras sont capables de potentialiser la sécrétion d’insuline. Cependant, le modèle classique ne permet pas d’expliquer cette potentialisation de la sécrétion d’insuline par les acides gras. Pour expliquer l’effet potentialisateur des acides gras, notre laboratoire a proposé un modèle complémentaire où le malonyl-CoA dérivé du métabolisme anaplérotique du glucose inhibe la carnitine palmitoyltransférase-1, l’enzyme qui constitue l’étape limitante de l’oxydation des acides gras favorisant ainsi leur estérification et donc la formation de dérivés lipidiques signalétiques. Le modèle anaplérotique/lipidique de la sécrétion d'insuline induite par le glucose prédit que le malonyl-CoA dérivé du métabolisme du glucose inhibe la bêta-oxydation des acides gras et augmente la disponibilité des acyl-CoA ou des acides gras non-estérifiés. Les molécules lipidiques agissant comme facteurs de couplage du métabolisme des acides gras à l'exocytose d'insuline sont encore inconnus. Des travaux réalisés par notre laboratoire ont démontré qu’en augmentant la répartition des acides gras vers la bêta-oxydation, la sécrétion d’insuline induite par le glucose était réduite suggérant qu’un des dérivés de l’estérification des acides gras est important pour la potentialisation sur la sécrétion d’insuline. En effet, à des concentrations élevées de glucose, les acides gras peuvent être estérifiés d’abord en acide lysophosphatidique (LPA), en acide phosphatidique (PA) et en diacylglycérol (DAG) et subséquemment en triglycérides (TG). La présente étude a établi l’importance relative du processus d’estérification des acides gras dans la production de facteurs potentialisant la sécrétion d’insuline. Nous avions émis l’hypothèse que des molécules dérivées des processus d’estérification des acides gras (ex : l’acide lysophosphatidique (LPA) et le diacylglycerol (DAG)) agissent comme signaux métaboliques et sont responsables de la modulation de la sécrétion d’insuline en présence d’acides gras. Afin de vérifier celle-ci, nous avons modifié le niveau d’expression des enzymes clés contrôlant le processus d’estérification par des approches de biologie moléculaire afin de changer la répartition des acides gras dans la cellule bêta. L’expression des différents isoformes de la glycérol-3-phosphate acyltransférase (GPAT), qui catalyse la première étape d’estérification des acides gras a été augmenté et inhibé. Les effets de la modulation de l’expression des isoenzymes de GPAT sur les processus d’estérifications, sur la bêta-oxydation et sur la sécrétion d’insuline induite par le glucose ont été étudiés. Les différentes approches que nous avons utilisées ont changé les niveaux de DAG et de TG sans toutefois altérer la sécrétion d’insuline induite par le glucose. Ainsi, les résultats de cette étude n’ont pas associé de rôle pour l’estérification de novo des acides gras dans leur potentialisation de la sécrétion d’insuline. Cependant, l’estérification des acides gras fait partie intégrante d’un cycle de TG/acides gras avec sa contrepartie lipolytique. D’ailleurs, des études parallèles à la mienne menées par des collègues du laboratoire ont démontré un rôle pour la lipolyse et un cycle TG/acides gras dans la potentialisation de la sécrétion d’insuline par les acides gras. Parallèlement à nos études des mécanismes de la sécrétion d’insuline impliquant les acides gras, notre laboratoire s’intéresse aussi aux effets négatifs des acides gras sur la cellule bêta. La glucolipotoxicité, résultant d’une exposition chronique aux acides gras saturés en présence d’une concentration élevée de glucose, est d’un intérêt particulier vu la prépondérance de l’obésité. L’isoforme microsomal de GPAT a aussi utilisé comme outil moléculaire dans le contexte de la glucolipotoxicité afin d’étudier le rôle de la synthèse de novo de lipides complexes dans le contexte de décompensation où la fonction des cellules bêta diminue. La surexpression de l’isoforme microsomal de la GPAT, menant à l’augmentation de l’estérification des acides gras et à une diminution de la bêta-oxydation, nous permet de conclure que cette modification métabolique est instrumentale dans la glucolipotoxicité. / Diabetes is a chronic disease of glucose homeostasis characterized by hyperglycemia and the result of a failure of insulin secretion in combination or not with impaired insulin action. Overnutrition and lack of physical activity in individuals who have acquired or inherited genetic predispositions lead to insulin resistance. During the period of compensation where the concentration of plasma fatty acids is high, hyperinsulinemia fully compensates for the insulin resistance of target tissues and blood sugar is normal. Glucose promotes insulin secretion through its metabolism by the pancreatic β cell. According to the classical model of glucose-induced insulin secretion, the increase in the ATP/ADP ratio resulting from glycolysis and glucose oxidation induces the closure of KATP channels thus changing membrane potential followed by an influx of Ca2+. This influx of Ca2+ allows the exocytosis of secretory granules containing insulin. Several nutrients like fatty acids are capable of potentiating insulin secretion. However, the classical model does not explain the potentiation of insulin secretion by fatty acids. To explain the potentiating effect of fatty acids, our laboratory has proposed a complementary model in which malonyl-CoA derived from glucose anaplerotic metabolism inhibits carnitine palmitoyltransferase 1, the enzyme catalyzing the limiting step of fatty acid oxidation, thereby promoting their esterification and thus the formation signaling derivatives. The anaplerotic model of insulin secretion predicts that malonyl-CoA derived from glucose metabolism inhibits β-oxidation of fatty acids and increases the availability of acyl-CoA or non esterified fatty acids. Thus, lipid molecules can act as coupling factors for insulin exocytosis. Fatty acid-derived signalling molecules that are active remain to be identified. Work performed by our laboratory has shown that increasing the partition of fatty acids toward β-oxidation reduced glucose-induced insulin secretion, suggesting that derivatives of fatty acid esterification are important for the potentiation of insulin secretion. Indeed, at high concentrations of glucose, fatty acids are esterified into lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG) and subsequently in triglycerides (TG). The present study established the relative importance fatty acid esterification in the production of factors potentiating insulin secretion. We hypothesized that molecules derived from the process of esterification of fatty acid (eg lysophosphatidic acid (LPA) and diacylglycerol (DAG)) act as metabolic signals and are responsible for the modulation of the secretion of insulin in the presence of fatty acids. Thus, the level of expression of key enzymes controlling the process of esterification has been altered by molecular biology approaches to increase distribution of fatty acids toward esterification in the β cell. The expression of various isoforms of glycerol-3-phosphate acyltransferase (GPAT), which catalyzes the first step of esterification of fatty acids was increased and inhibited. The effects of GPAT isoenzyme modulation on the esterification process, on β-oxidation and on glucose-induced insulin secretion were investigated. The various approaches we used have changed the levels of DAG and TG without altering insulin secretion induced by glucose in the presence or absence of fatty acids. Thus, the results of this study do not suggest a role for de novo synthesis of glycerolipid intermidiates via esterification of fatty acids in the potentiation of insulin secretion. However, the esterification of fatty acids is an integral part of a TG/fatty acid cycle with its counterpart lipolysis. Moreover, parallel studies conducted by colleagues of the laboratory have demonstrated a role for lipolysis and a cycle TG/fatty acid in the potentiation of insulin secretion by fatty acids. In parallel with our studies of the mechanisms of insulin secretion involving fatty acids, our laboratory is also interested in the negative effects of fatty acids on the β cell. The glucolipotoxicity resulting from chronic exposure to saturated fatty acids in the presence of high glucose concentrations is of particular interest in the context of obesity rates. The microsomal isoform of GPAT was also used as a molecular tool under glucolipotoxicity conditions to study the role of de novo synthesis of complex lipids in the context of decompensation when β-cell function decreases. Increased esterification of fatty acids by the overexpression of microsomal isoform of GPAT has increased the toxic effects of fatty acids in the context of glucolipotoxicity. Thus, our results allow us to conclude that the distribution of lipids toward esterification and a decrease in β-oxidation is instrumental in glucolipotoxicity.
9

Rôle de l'estérification des acides gras dans la régulation de la sécrétion d'insuline et le stress métabolique induits par le glucose

Barbeau, Annie 04 1900 (has links)
Le diabète est une maladie chronique de l’homéostasie du glucose caractérisée par une hyperglycémie non contrôlée qui est le résultat d’une défaillance de la sécrétion d’insuline en combinaison ou non avec une altération de l’action de l’insuline. La surnutrition et le manque d’activité physique chez des individus qui ont des prédispositions génétiques donnent lieu à la résistance à l’insuline. Pendant cette période dite de compensation où la concentration d’acides gras plasmatiques est élevée, l’hyperinsulinémie compense pleinement pour la résistance à l’insuline des tissus cibles et la glycémie est normale. Le métabolisme du glucose par la cellule pancréatique bêta entraîne la sécrétion d’insuline. Selon le modèle classique de la sécrétion d’insuline induite par le glucose, l’augmentation du ratio ATP/ADP résultant de la glycolyse et de l’oxydation du glucose, induit la fermeture des canaux KATP-dépendant modifiant ainsi le potentiel membranaire suivi d’un influx de Ca2+. Cet influx de Ca2+ permet l’exocytose des granules de sécrétion contenant l’insuline. Plusieurs nutriments comme les acides gras sont capables de potentialiser la sécrétion d’insuline. Cependant, le modèle classique ne permet pas d’expliquer cette potentialisation de la sécrétion d’insuline par les acides gras. Pour expliquer l’effet potentialisateur des acides gras, notre laboratoire a proposé un modèle complémentaire où le malonyl-CoA dérivé du métabolisme anaplérotique du glucose inhibe la carnitine palmitoyltransférase-1, l’enzyme qui constitue l’étape limitante de l’oxydation des acides gras favorisant ainsi leur estérification et donc la formation de dérivés lipidiques signalétiques. Le modèle anaplérotique/lipidique de la sécrétion d'insuline induite par le glucose prédit que le malonyl-CoA dérivé du métabolisme du glucose inhibe la bêta-oxydation des acides gras et augmente la disponibilité des acyl-CoA ou des acides gras non-estérifiés. Les molécules lipidiques agissant comme facteurs de couplage du métabolisme des acides gras à l'exocytose d'insuline sont encore inconnus. Des travaux réalisés par notre laboratoire ont démontré qu’en augmentant la répartition des acides gras vers la bêta-oxydation, la sécrétion d’insuline induite par le glucose était réduite suggérant qu’un des dérivés de l’estérification des acides gras est important pour la potentialisation sur la sécrétion d’insuline. En effet, à des concentrations élevées de glucose, les acides gras peuvent être estérifiés d’abord en acide lysophosphatidique (LPA), en acide phosphatidique (PA) et en diacylglycérol (DAG) et subséquemment en triglycérides (TG). La présente étude a établi l’importance relative du processus d’estérification des acides gras dans la production de facteurs potentialisant la sécrétion d’insuline. Nous avions émis l’hypothèse que des molécules dérivées des processus d’estérification des acides gras (ex : l’acide lysophosphatidique (LPA) et le diacylglycerol (DAG)) agissent comme signaux métaboliques et sont responsables de la modulation de la sécrétion d’insuline en présence d’acides gras. Afin de vérifier celle-ci, nous avons modifié le niveau d’expression des enzymes clés contrôlant le processus d’estérification par des approches de biologie moléculaire afin de changer la répartition des acides gras dans la cellule bêta. L’expression des différents isoformes de la glycérol-3-phosphate acyltransférase (GPAT), qui catalyse la première étape d’estérification des acides gras a été augmenté et inhibé. Les effets de la modulation de l’expression des isoenzymes de GPAT sur les processus d’estérifications, sur la bêta-oxydation et sur la sécrétion d’insuline induite par le glucose ont été étudiés. Les différentes approches que nous avons utilisées ont changé les niveaux de DAG et de TG sans toutefois altérer la sécrétion d’insuline induite par le glucose. Ainsi, les résultats de cette étude n’ont pas associé de rôle pour l’estérification de novo des acides gras dans leur potentialisation de la sécrétion d’insuline. Cependant, l’estérification des acides gras fait partie intégrante d’un cycle de TG/acides gras avec sa contrepartie lipolytique. D’ailleurs, des études parallèles à la mienne menées par des collègues du laboratoire ont démontré un rôle pour la lipolyse et un cycle TG/acides gras dans la potentialisation de la sécrétion d’insuline par les acides gras. Parallèlement à nos études des mécanismes de la sécrétion d’insuline impliquant les acides gras, notre laboratoire s’intéresse aussi aux effets négatifs des acides gras sur la cellule bêta. La glucolipotoxicité, résultant d’une exposition chronique aux acides gras saturés en présence d’une concentration élevée de glucose, est d’un intérêt particulier vu la prépondérance de l’obésité. L’isoforme microsomal de GPAT a aussi utilisé comme outil moléculaire dans le contexte de la glucolipotoxicité afin d’étudier le rôle de la synthèse de novo de lipides complexes dans le contexte de décompensation où la fonction des cellules bêta diminue. La surexpression de l’isoforme microsomal de la GPAT, menant à l’augmentation de l’estérification des acides gras et à une diminution de la bêta-oxydation, nous permet de conclure que cette modification métabolique est instrumentale dans la glucolipotoxicité. / Diabetes is a chronic disease of glucose homeostasis characterized by hyperglycemia and the result of a failure of insulin secretion in combination or not with impaired insulin action. Overnutrition and lack of physical activity in individuals who have acquired or inherited genetic predispositions lead to insulin resistance. During the period of compensation where the concentration of plasma fatty acids is high, hyperinsulinemia fully compensates for the insulin resistance of target tissues and blood sugar is normal. Glucose promotes insulin secretion through its metabolism by the pancreatic β cell. According to the classical model of glucose-induced insulin secretion, the increase in the ATP/ADP ratio resulting from glycolysis and glucose oxidation induces the closure of KATP channels thus changing membrane potential followed by an influx of Ca2+. This influx of Ca2+ allows the exocytosis of secretory granules containing insulin. Several nutrients like fatty acids are capable of potentiating insulin secretion. However, the classical model does not explain the potentiation of insulin secretion by fatty acids. To explain the potentiating effect of fatty acids, our laboratory has proposed a complementary model in which malonyl-CoA derived from glucose anaplerotic metabolism inhibits carnitine palmitoyltransferase 1, the enzyme catalyzing the limiting step of fatty acid oxidation, thereby promoting their esterification and thus the formation signaling derivatives. The anaplerotic model of insulin secretion predicts that malonyl-CoA derived from glucose metabolism inhibits β-oxidation of fatty acids and increases the availability of acyl-CoA or non esterified fatty acids. Thus, lipid molecules can act as coupling factors for insulin exocytosis. Fatty acid-derived signalling molecules that are active remain to be identified. Work performed by our laboratory has shown that increasing the partition of fatty acids toward β-oxidation reduced glucose-induced insulin secretion, suggesting that derivatives of fatty acid esterification are important for the potentiation of insulin secretion. Indeed, at high concentrations of glucose, fatty acids are esterified into lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG) and subsequently in triglycerides (TG). The present study established the relative importance fatty acid esterification in the production of factors potentiating insulin secretion. We hypothesized that molecules derived from the process of esterification of fatty acid (eg lysophosphatidic acid (LPA) and diacylglycerol (DAG)) act as metabolic signals and are responsible for the modulation of the secretion of insulin in the presence of fatty acids. Thus, the level of expression of key enzymes controlling the process of esterification has been altered by molecular biology approaches to increase distribution of fatty acids toward esterification in the β cell. The expression of various isoforms of glycerol-3-phosphate acyltransferase (GPAT), which catalyzes the first step of esterification of fatty acids was increased and inhibited. The effects of GPAT isoenzyme modulation on the esterification process, on β-oxidation and on glucose-induced insulin secretion were investigated. The various approaches we used have changed the levels of DAG and TG without altering insulin secretion induced by glucose in the presence or absence of fatty acids. Thus, the results of this study do not suggest a role for de novo synthesis of glycerolipid intermidiates via esterification of fatty acids in the potentiation of insulin secretion. However, the esterification of fatty acids is an integral part of a TG/fatty acid cycle with its counterpart lipolysis. Moreover, parallel studies conducted by colleagues of the laboratory have demonstrated a role for lipolysis and a cycle TG/fatty acid in the potentiation of insulin secretion by fatty acids. In parallel with our studies of the mechanisms of insulin secretion involving fatty acids, our laboratory is also interested in the negative effects of fatty acids on the β cell. The glucolipotoxicity resulting from chronic exposure to saturated fatty acids in the presence of high glucose concentrations is of particular interest in the context of obesity rates. The microsomal isoform of GPAT was also used as a molecular tool under glucolipotoxicity conditions to study the role of de novo synthesis of complex lipids in the context of decompensation when β-cell function decreases. Increased esterification of fatty acids by the overexpression of microsomal isoform of GPAT has increased the toxic effects of fatty acids in the context of glucolipotoxicity. Thus, our results allow us to conclude that the distribution of lipids toward esterification and a decrease in β-oxidation is instrumental in glucolipotoxicity.
10

The Beneficial Effects of The Gut-Derived Metabolite Trimethylamine N-oxide on Functional β-Cell Mass

Krueger, Emily Suzanne 06 August 2021 (has links)
Elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD) 10 years ago. Research has since defined that serum TMAO accumulation is controlled by the diet-microbiome-liver-kidney axis. Choline related nutrients are consumed in excess during over-nutrition from a Western diet. The resultant elevated serum TMAO is investigated across various chronic metabolic diseases and many tissue types. While TMAO is most clearly linked to CVD mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease context across relevant metabolic tissues including liver, kidney, brain, adipose, and muscle tissues. This review explores the variable TMAO effects in healthy and diseased conditions. Since impaired pancreatic β-cell function is a hallmark of metabolic disease pathogenesis which are largely unexplored in TMAO research, the following primary research results investigate TMAO effects on in vitro functional β-cell mass in relation to healthy and type 2 diabetes (T2D) conditions. Although we hypothesized that TMAO would aggravate functional β-cell mass, the data demonstrate that TMAO improves the T2D phenotype by increasing insulin secretion and production and reducing oxidative stress. Therefore, this work provides crucial support for the emerging context dependent molecular effects of TMAO during metabolic disease progression.

Page generated in 0.4914 seconds