• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 10
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A triangulation based approach to three dimensional geoscientific modelling

Lattuada, Roberto January 1999 (has links)
No description available.
2

The effect of a putative acyl-CoA synthetase 5 inhibitor on lipid accumulation and insulin release from clonal pancreatic beta-cell

Qiu, Yuhan 14 June 2019 (has links)
It is estimated by the World Health Organization (WHO) that 422 million people had diabetes worldwide in 2014, including 30.3 million people in the US. The cost of treating the disease is has tripled from 2003-2013 due to the increased number of patients. One of the genes strongly associated with type 2 diabetes (T2D) is the transcription factor 7 like 2 (TCF7L2). A single nucleotide polymorphism (SNP) of the TCF7L2 results in increased expression of long chain acyl-CoA synthetase 5 (ACSL5) while deletion of this part of the TCF7L2 gene reduces ACSL5 mRNA level. The regulation of ACSL5 gene expression by the high risk TCF7L2 allele highlights the importance of investigating the role of ACSL5 in T2D. ACSL5 is one of a family of enzymes that activates FA to its CoA ester and is required for FA metabolism within cells. Mice lacking this protein have reduced fat mass and are more insulin sensitive. Chronic exposure of clonal pancreatic ß-cells to excess nutrients has been shown to result in increased intrinsic lipid droplets, reduced insulin content, a left-shift in glucose dose-dependent insulin secretion curve characterized by basal insulin hypersecretion (IH) and blunted glucose stimulated insulin secretion (GSIS). We tested the hypothesis that the use of a putative ACSL5 inhibitor (Adipo C) can reduce accumulated lipid droplets, rescue insulin content and reverse the left-shift in glucose dose-dependent insulin secretion curve. INS-1 (823/13) cells were cultured in either 4 mM or 11 mM glucose media representing physiological and excess nutrients environment. Adipo C (10-25 µM) was added to cells to both acutely (2 hrs) and chronically (72 hrs) inhibit ACSL5 activity. Thin layer chromatography with C11 Bodipy fatty acid (BFA) was used to detect acute fatty acid incorporation into neutral lipids. Nile red was used to visualize intrinsic lipid droplets inside cells. Intracellular Ca2+ activity was detected using fura 2. Insulin assay was measured by HTRF. Acute fatty acid incorporation and lipid accumulation were reduced in cells exposed to Adipo C. An Adipo C concentration dependent right shift of glucose dose-dependent insulin release and increased insulin content were observed. 11 mM glucose cells cultured in 25 µM Adipo C showed decreased intracellular Ca2+ activity at 3 mM glucose and increased Ca2+ activity at 12 mM glucose, which are characteristic of cells cultured in 4 mM glucose having reduced lipid stores. These results all indicate possible protective effects on -cells exposed to excess nutrients. Islets of T2D patients who have a physiologically elevated blood glucose level are exposed to a similar excess nutrient environment. Therefore, the results illustrated here warrant further research on Adipo C compound to explore its therapeutic potential on T2D.
3

Beta-cell basal insulin hypersecretion rescued by lipid lowering methods

Zhang, Xiaotian 31 January 2022 (has links)
OBJECTIVE: The close relationship between obesity and type 2 diabetes (T2D) highlights the fact that most diabetes patients are overweight or obese. We propose that elevated glucose and free fatty acid levels in those patients cause beta-cell dysfunction. Chronic exposure to excess nutrients (glucose and free fatty acid) leads to glucolipotoxicity, characterized by basal insulin hypersecretion, a left-shift in the glucose dose-dependent insulin secretion curve, and blunted glucose-stimulated insulin secretion. One of the suggested reasons for this defect is elevated intracellular lipid. In this study, our objective was to investigate whether reducing beta-cell lipid levels can reverse basal insulin hypersecretion. METHODS: INS-1 (823/13) cells were cultured in 4 or 11 mM glucose media. Elevated glucose and KCl doses were added to cells in the insulin secretion experiments. In the KCl-induced insulin secretion experiment, cells were treated with a combination of 12 mM glucose and 250 μM diazoxide, then assigned to different test concentrations with elevated KCl doses. Insulin release and content were measured by the insulin ultra-sensitive homogenous time-resolved fluorescence (HTRF) kit (Cisbio). Following that, we monitored intracellular Ca2+ activity of KCl-induced insulin secretion on a fluorescence spectrophotometer F-2000 (Hitachi). Additionally, we acutely added Adipo C (20 µM) or fatty acid-free BSA to cells to reduce the lipids levels in the ß-cells. We also stained with Nile Red (Sigma) to examine the intrinsic lipid droplets in those cells. RESULTS: ß-cells cultured in excess nutrients (11 mM glucose) exhibited a left shift in the glucose dose-dependent response curve. The hypersecretion at low glucose could be blocked by the KATP channel activator, diazoxide, indicating that Ca2+ influx drives the increase in secretion at glucose concentrations normally considered basal. Here we extend this left shift to include KCl-induced insulin secretion, supporting a role for Ca2+ in the observed hypersensitivity. KCl-induced Ca2+ influx was also left-shifted. Interestingly, we found acute exposure to Adipo C or fatty acid-free BSA reversed the basal hypersecretion in cells cultured in excess nutrients. CONCLUSION: The work presented in this study provided supporting evidence that ß-cells cultured in excess nutrients were hypersensitive to glucose while extending these studies to KCl-induced insulin release. The excess nutrient-induced left shift in both glucose and KCl-stimulated insulin secretion was mediated by increased Ca2+. Thus, we postulate that excess nutrient exposure increases ß-cell plasma membrane lipids that alter Ca2+ handling to allow increased Ca2+ influx at inappropriate low glucose concentrations. Our results demonstrated that cells acutely exposed to the putative long-chain acyl-CoA synthetase inhibitor Adipo C or fatty acid-free BSA reversed basal insulin hypersecretion and supports a role for lipids mediating the adverse effect. T2D patients with obesity have a similar physiologically elevated fasting blood glucose and lipid. Thus, our findings suggest lowering lipid levels in ß-cells may have therapeutic potential in treating hyperinsulinemia leading to T2D.
4

The impact of adipocyte-specific GPS2 depletion on insulin secretion from clonal pancreatic beta-cells (INS-1)

Fan, Ting-Yu 03 November 2023 (has links)
OBJECTIVE: Obesity is a chronic disease with high incidence worldwide, which promotes the risk of incidence of type 2 diabetes (T2D). Obesity-induced adipocyte expansion promotes local chronic inflammation in the adipose tissue which is considered a contributing factor to insulin resistance, hyperinsulinemia, and T2D. Many organs, including adipose tissue, involve in the dysregulation of glucose homeostasis in T2D. The crosstalk between adipose tissue/adipocytes and pancreatic ß-cells has provoked scientists' interest for years. Here in this thesis, we focused on the effect carried out by adipocyte-specific GPS2 depletion on insulin secretion from pancreatic ß-cells. METHODS: Conditioned media collected over 24 h from both primary adipocyte and adipose tissue explant cultures from high fat diet (HFD)-fed WT and adipocyte-specific GPS2 knock-out (GPS2-AKO) mice were used to treat INS-1 clonal pancreatic ß-cells or primary islets from chow-diet WT mice. Conditioned media was diluted 1:8 in culture media of clonal INS-1 cells (cultured in media with 4 mM or 11 mM glucose chronically) and primary islets (cultured in media with 11 mM glucose) and incubated for 18 h before measuring insulin secretion. The isolated islets from chow-diet WT mice were also be treated with the primary adipocytes conditioned media from eWAT (epididymal white adipose tissue) of HFD-fed WT and GPS2-AKO mice. In addition, the effect of exosomes extracted from primary adipocyte conditioned media of HFD-fed WT and GPS2-AKO mice on GSIS was investigated in clonal INS-1 cells. Glucose-stimulated insulin secretion (GSIS) was measured to assess differences in insulin secretion by INS-1 cells and islets from mice in response to signaling from WT or GPS2-AKO adipocytes. RESULTS: Adipocyte conditioned media from both WT and GPS2-AKO mice reduced GSIS from INS-1 cells by the same extent compared to a non-treated control. The same result was obtained using media conditioned by adipose tissue explant culture. Exosomes isolated from adipocyte conditioned media from both WT and GPS2-AKO mice also reduced GSIS from INS-1 cells with no significant difference between WT and GPS2-AKO. Islets isolated from chow-diet WT mice treated with adipocyte conditioned media from eWAT of WT and GPS2-AKO mice also showed no significant difference between WT and GPS2-AKO in GSIS compared to our non-treated control. CONCLUSIONS: Both conditioned media and exosomes from primary adipocytes of HFD-fed mice inhibits GSIS from INS-1 cells and isolated islets, but no difference was observed between WT and GPS2-AKO mice. We conclude that the deletion of GPS2 in adipocytes does not influence GSIS from pancreatic ß-cells under our experimental conditions. Conditioned media-induced inhibition of GSIS is mediated by factors that may contribute to adipocyte-ß-cell crosstalk in-vivo. / 2025-11-02T00:00:00Z
5

The role of PKCε in pancreatic β-Cell secretory function and its contribution to the development of lipid induced secretory defects

Burchfield, James, Clinical School - St Vincent's Hospital, Faculty of Medicine, UNSW January 2008 (has links)
Type 2 diabetes accounts for 85-90% of all people with diabetes and is currently estimated to affect more than 180 million people worldwide, a figure estimated to double by the year 2030. Thus understanding the basic biology of glucose homeostasis and how it is altered during disease progression is crucial to the development of safe and effective treatment regimes. The link between high dietary fat and the development of type Il diabetes is well established. Chronic treatment of pancreatic islets with the lipid palmitate induces defects in glucose stimulated insulin secretion (GSIS) akin to those seen in the development of type Il diabetes. Previous studies from our group have identified the lipid-activated kinase protein kinase C epsilon (PKCε) as a potential mediator of some of these effects. Deletion of PKCε in mice results in complete protection from high-fat diet induced glucose intolerance. This protection is associated with enhanced circulating insulin suggesting that PKCε may be involved in the regulation of insulin release from the pancreatic β-Cell. The data presented here suggests that PKCs plays an important role in the regulation of insulin secretion under both physiological and pathophysiological conditions. We demonstrate that PKCε can be activated by chronic lipid treatment and acute cholinergic stimulation. Under these conditions insulin secretion is enhanced by PKCε deletion or inhibition suggesting that PKCε is a negative regulator of insulin secretion. Mechanistically the PKCs mediated inhibition of insulin release by acute or chronic PKCε activation appears to be distinct. The effect of PKCε induced by palmitate pre-treatment appears to be distal to calcium influx. The pool of pre-docked vesicles is enhanced in palmitate pre-treated β-cells lacking PKCε suggesting that PKCε may be involved in the regulation of vesicle dynamics. In contrast, calcium dynamics induced by cholinergic stimulation are altered by PKCε deletion, suggesting an effect on either the calcium channels themselves or on the upstream signalling. Given the ability of PKCε to inhibit insulin secretion, inhibition of PKCε in the β-cells of people suffering from insulin resistance and (or) type II diabetes represents a novel target for the treatment of type II diabetes.
6

Identifying New Treatment Options and Risk Factors for Type 2 Diabetes: The Potential Role of Thymoquinone and Persistent Organic Pollutants

Karandrea, Shpetim 28 October 2017 (has links)
Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, which develops as a consequence of peripheral insulin resistance and defective insulin secretion from pancreatic β-cells. A high calorie diet coupled with physical inactivity are known risk factors for the development of T2DM; however, these alone fail to account for the rapid rise of the disease. Recent attention has turned to the role of environmental pollutants in the development of metabolic diseases. PBDEs (polybrominated diphenyl ethers) are environmental pollutants that have been linked to the development of type 2 diabetes (T2D), however, the precise mechanisms are not clear. In particular, their direct effect on insulin secretion is unknown. In this study, we show that two PBDE congeners, BDE-47 and BDE-85, potentiate glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 cells. This effect of BDE-47 and BDE-85 on GSIS was dependent on thyroid receptor (TR). Both BDE-47 and BDE-85 (10 μM) activated Akt during an acute exposure. The activation of Akt by BDE-47 and BDE-85 plays a role in their potentiation of GSIS, as pharmacological inhibition of PI3K, an upstream activator of Akt, significantly lowers GSIS compared to compounds alone. This study suggests that BDE-47 and BDE-85 directly act on pancreatic β-cells to stimulate GSIS, and that this effect is mediated by the thyroid receptor (TR) and Akt activation. This can cause the β-cells to oversecrete insulin, potentially leading to hyperinsulinemia, insulin resistance, and high blood glucose. In contrast to the potential diabetogenic effects of POPs, there are several naturally-derived compounds which accomplish just the opposite, exerting sensitizing effect on the peripheral tissues and sparing effect on β-cells. TQ, a natural occurring quinone and the main bioactive component of plant Nigella sativa, undergoes intracellular redox cycling and re-oxidizes NADH to NAD+. TQ administration (20 mg/kg/bw/day) to the Diet-Induced Obesity (DIO) mice reduced their diabetic phenotype by decreasing fasting blood glucose and fasting insulin levels, and improved glucose tolerance and insulin sensitivity as evaluated by oral glucose and insulin tolerance tests (OGTT and ITT). Furthermore, TQ decreased serum cholesterol levels and liver triglycerides, increased protein expression of phosphorylated Akt, decreased serum levels of inflammatory markers resistin and MCP-1, and decreased the NADH/NAD+ ratio. These changes were paralleled by an increase in phosphorylated SIRT-1 and AMPKα in liver and phosphorylated SIRT-1 in skeletal muscle. TQ also increased insulin sensitivity in insulin-resistant HepG2 cells via a SIRT-1-dependent mechanism These findings are consistent with the TQ-dependent re-oxidation of NADH to NAD+, which stimulates glucose and fatty acid oxidation and activation of SIRT-1-dependent pathways. Taken together, these results demonstrate that TQ ameliorates the diabetic phenotype in the DIO mouse model of type 2 diabetes.
7

Treinamento aeróbio de intensidade moderada mantém a viabilidade celular de ilhotas pancreáticas e previne a perda da resposta secretora de insulina à glicose em camundongos alimentados com dieta hipercalórica. / Moderate aerobic training maintains pancreatic islet cellular viability and prevents glucose stimulated insulin secretion impairment in mice fed a hypercaloric diet.

Véras, Katherine Maria de Araujo 01 November 2016 (has links)
Os efeitos do treinamento aeróbio moderado sobre a viabilidade celular e a GSIS das ilhotas pancreáticas foram investigados em camundongos C57BL/6 alimentados com dieta rica em lipídios (60%) e sacarose (20%) (HFDS). Os grupos foram: HFDS, dieta controle (C), HFDS treinado (HFDSTR), controle treinado (CTR). Após 8 semanas, houve aumentada massa corporal e adiposidade e diminuída tolerância à glicose e sensibilidade à insulina no HFDS; tais efeitos foram atenuados em HFDSTR. Houve menor percentual de células viáveis e prejudicada GSIS no HFDS do que no HFDSTR e C. As expressões do GLUT2 e da CuZn superóxido dismutase-1 (SOD1) foram diminuídas em HFDS, mas não no HFDSTR. As respostas observadas nas ilhotas do grupo HFDSTR foram semelhantes ao grupo C. O treinamento aeróbio de 8 semanas preveniu os efeitos deletérios da HFDS sobre a sensibilidade à insulina, viabilidade celular e GSIS e manteve o conteúdo enzimático antioxidante endógeno, sugerindo que o treinamento aeróbio possa ser benéfico na prevenção dos efeitos deletérios de uma HFDS. / This study investigated the aerobic training effects on GSIS and pancreatic islet cellular viability in C57BL/6 mice fed a high fat (60%) and sucrose (20%) diet (HFDS). The groups were: HFDS, control diet (C), HFDS + training (HFDSTR) and control trained (CTR). After 8 weeks the HFDS significantly increased body mass and adiposity, decreased glucose tolerance and insulin sensitivity, and impaired GSIS and cellular viability; these effects were attenuated in HFDSTR. There were less viable pancreatic islets cells and impaired GSIS in HFDS than in HFDSTR and C. The decreased GLUT 2 and CuZn-superoxide dismutase 1 (SOD1) protein expression in HFDS were increased in HFDSTR. Most pancreatic islet responses were similar between HFDSTR and C. Eight weeks aerobic training prevented deleterious effects of HFDS on insulin sensitivity, cellular viability and GSIS, and maintained endogenous antioxidant enzyme content, thus suggesting that aerobic training may be beneficial to prevent adverse metabolic effects associated with westernized diet consuming.
8

FGFs and Wnts in pancreatic growth and β-cell function

Papadopoulou, Stella January 2005 (has links)
Mesenchymal-epithelial interactions are pivotal for proper pancreatic growth and development. The pancreatic progenitor cells present in the early pancreatic anlagen proliferate and eventually give rise to all pancreatic cell types. The Fibroblast Growth Factor 2b (FGFR2b) high-affinity ligand Fibroblast Growth Factor 10 (FGF10) has been linked to pancreatic epithelial cell proliferation and we have previously shown that Notch signalling controls pancreatic cell differentiation via lateral inhibition. By overexpressing FGF10 under the control of the Ipf1/Pdx1 promoter in mice, we have shown that persistent FGF10 activation in the embryonic pancreas of transgenic mice perturbs pancreatic epithelial cell proliferation and also inhibits pancreatic cell differentiation by maintaining Notch activation. In the Ipf1/Fgf10 transgenic mice, the pancreatic epithelial cells are ‘locked’ in an undifferentiated progenitor-like state with sustained proliferative capacity. Collectively, our data suggest a key role for FGFR2b/FGF10 signalling in the regulation of pancreatic growth and differentiation and that FGFR2b/FGF10 signalling interact with the Notch signalling pathway. Glucose homeostasis in mammals is critically dependent on co-ordinated glucose uptake, oxidative metabolism and insulin secretion in β-cells. Although, several key genes controlling various aspects of glucose sensing, glucose metabolism, insulin expression and secretion have been identified, we know relatively little about the molecular mechanisms that induce and maintain the expression of genes required for glucose-stimulated insulin secretion (GSIS) in β-cells. Attenuation of FGFR1c signalling leads to diabetes in mice. Overexpression of FGF2, a high-affinity FGFR1c ligand, under the control of the Ipf1/Pdx1 promoter also leads to diabetes in mice. The Ipf1/Fgf2 mice present with normal endocrine and exocrine differentiation but display impaired glucose-stimulated insulin secretion (GSIS), perturbed expression of genes required for glucose sensing uptake together with oxidative metabolism and increased expression of the FGF-signalling inhibitors Spry-2 and Pyst1/MKP3 in β-cells. Thus, stringent control of FGF signalling activation appears crucial for the maintenance of the regulatory circuit that ensures proper GSIS in pancreatic β-cells and hence normoglycaemia. The Wnt family of ligands via their receptors Frizzled (Frz) have been shown to mediate mesenchymal-epithelial interactions and cell proliferation in a variety of different systems. Expression of a plethora of Wnt ligands and Frz receptors has been previously reported in the pancreas and mice missexpressing Wnt1 and Wnt5a under the Ipf1/Pdx1 promoter display severely perturbed development. Here, we show the temporal and spatial expression of Wnt4, Wnt7b and Frz3 at different stages of pancreas development. To elucidate the role of Wnt signalling in the pancreas, we overexpressed a dominant negative form of mouse Frz8 under the Ipf1/Pdx1 promoter in mice. The Ipf1/Frz8CRD mice display severe pancreatic hypoplasia demonstrating that attenuation of Wnt signalling in the pancreas leads to perturbed pancreatic growth. Nevertheless, the transgenic mice present with normal endocrine and exocrine differentiation and remain normoglycaemic. The maintenance of normoglycaemia in these mice appears to be the consequence of a relative increase in endocrine cell number per pancreatic area combined with enhanced insulin biosynthesis and insulin secretion. Collectively our data provide evidence that Wnt signalling is required pancreatic growth but not adult β-cell function.
9

Role of BMP signaling and ASNA1 in β-cells

Goulley, Joan January 2008 (has links)
Patients with type II diabetes present alterations in glucose homeostasis due to insufficient amount of insulin (β-cell dysfunction) and inability to properly use the insulin that is secreted (insulin resistance). Combined genetical and environmental factors are believed to be responsible for these dysfunctions and the resulting impairment in glucose homeostasis. The pancreatic gland is composed of exocrine and endocrine tissues. The endocrine part of the organ couples glucose sensing to insulin release. Within this endocrine gland, also known as islets of Langerhans, the insulin secreting β-cell is the main player and therefore highly important for proper glucose metabolism. In this thesis, mice were developed in order to assess the role of BMP signaling molecule and Arsenite induced ATPase-1 (Asna1) for pancreas development and β-cell function. The mature β-cell responds to elevated glucose levels by secreting insulin in a tightly controlled manner. This physiological response of the β-cell to elevated blood glucose levels is critical for maintenance of normoglycaemia and impaired Glucose stimulated insulin secretion (GSIS) is a prominent feature of overt type 2 diabetes. Thus, the identification of signals and pathways that ensure and stimulate GSIS in β-cells is of great clinical interest. Here we show (Paper I) that BMPRIA and its high affinity ligand BMP4 are expressed in fetal and adult islets. We also provide evidence that BMPRIA signaling in adult β-cell is required for GSIS, and that both transgenic expression of Bmp4 in β-cells or systemic administration of BMP4 protein to mice enhances GSIS. Thus, BMP4-BMPRIA signaling in β-cells positively regulates the genetic machinery that ensures GSIS. Arsenite induced ATPase (Asna1), the homologue of the bacterial ArsA ATPase, is expressed in insulin producing cells of both mammals and the nematode Caenorhabditis elegans (C.elegans). Asna1 has been proposed to act as an evolutionary conserved regulator of insulin/insulin like factor signaling. In C.elegans, asna-1 has been shown to regulate growth in a non-cell autonomous and IGF-receptor dependent manner. Here we show that transgenic expression of ASNA1 in β-cells of mice leads to enhanced Aktactivity and β-cell hyperplasia (manuscript). ASNA1 transgenic mice develop, however, diabetes due to impaired insulin secretion. The expression of genes involved in secretion stimulus coupling and insulin exocytosis is perturbed in islets of these mice. These data suggest that activation of ASNA1, here mimicked by enhanced expression, positively influences β-cell mass but negatively affects insulin secretion.
10

The Beneficial Effects of The Gut-Derived Metabolite Trimethylamine N-oxide on Functional β-Cell Mass

Krueger, Emily Suzanne 06 August 2021 (has links)
Elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD) 10 years ago. Research has since defined that serum TMAO accumulation is controlled by the diet-microbiome-liver-kidney axis. Choline related nutrients are consumed in excess during over-nutrition from a Western diet. The resultant elevated serum TMAO is investigated across various chronic metabolic diseases and many tissue types. While TMAO is most clearly linked to CVD mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease context across relevant metabolic tissues including liver, kidney, brain, adipose, and muscle tissues. This review explores the variable TMAO effects in healthy and diseased conditions. Since impaired pancreatic β-cell function is a hallmark of metabolic disease pathogenesis which are largely unexplored in TMAO research, the following primary research results investigate TMAO effects on in vitro functional β-cell mass in relation to healthy and type 2 diabetes (T2D) conditions. Although we hypothesized that TMAO would aggravate functional β-cell mass, the data demonstrate that TMAO improves the T2D phenotype by increasing insulin secretion and production and reducing oxidative stress. Therefore, this work provides crucial support for the emerging context dependent molecular effects of TMAO during metabolic disease progression.

Page generated in 0.4308 seconds