Dans la première partie de cette thèse, nous introduisons des intégrales d'ordre m et leur associons des formules d'Ito. Nous nous intéressons plus particulièrement au cas du mouvement brownien fractionnaire. Dans la seconde partie, nous étudions les approximations aux premier et second ordres des intégrales d'ordre m. Nous donnons des résultats de convergences presque-sure et en loi. Dans la troisième partie, nous nous intéressons aux équations différentielles dirigées par une fonction holdérienne. Nous donnons un résultat d'existence et d'unicité et étudions deux approximations de la solution. Dans la quatrième partie, nous étudions l'absolue continuité de la loi de la solution d'une équation différentielle stochastique dirigée par un mouvement brownien fractionnaire. Nous proposons un critère simple assurant que la solution au temps t admet une densité. Enfin, la dernière partie s'intéresse à l'estimation du coefficient de volatilité de la solution d'une équation différentielle stochastique classique. Nous construisons également un test d'adéquation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008600 |
Date | 30 June 2004 |
Creators | Nourdin, Ivan |
Publisher | Université Henri Poincaré - Nancy I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds