Return to search

A Multi-Agent based Optimization Method for Combinatorial Optimization Problems / Une méthode d’optimisation à base de système multi-agents pour l’optimisation combinatoire

Nous élaborons une approche multi-agents pour la résolution des problèmes d’optimisation combinatoire nommée MAOM-COP. Elle combine des métaheuristiques, les systèmes multi-agents et l’apprentissage par renforcement. Les heuristiques manquent d’une vue d’ensemble sur l’évolution de la recherche. Notre objectif consiste à utiliser les systèmes multi-agents pour créer des méthodes de recherche coopératives. Ces méthodes explorent plusieurs métaheuristiques. MAOM-COP est composée de plusieurs agents qui sont l’agent décideur, les agents intensificateurs et les agents diversificateurs (agents croisement et agent perturbation). A l’aide de l’apprentissage, l’agent décideur décide dynamiquement quel agent à activer entre les agents intensificateurs et les agents croisement. Si les agents intensificateurs sont activés, ils appliquent des algorithmes de recherche locale. Durant leurs recherches, ils peuvent s’échanger des informations, comme ils peuvent déclencher l’agent perturbation. Si les agents croisement sont activés, ils exécutent des opérateurs de recombinaison. Nous avons appliqué MAOM-COP sur les problèmes suivants : l’affectation quadratique, la coloration des graphes, la détermination des gagnants et le sac à dos multidimensionnel. MAOM-COP possède des performances compétitives par rapport aux algorithmes de l’état de l’art. / We elaborate a multi-agent based optimization method for combinatorial optimization problems named MAOM-COP. It combines metaheuristics, multiagent systems and reinforcement learning. Although the existing heuristics contain several techniques to escape local optimum, they do not have an entire vision of the evolution of optimization search. Our main objective consists in using the multi-agent system to create intelligent cooperative methods of search. These methods explore several existing metaheuristics. MAOMCOP is composed of the following agents: the decisionmaker agent, the intensification agents and the diversification agents which are composed of the perturbation agent and the crossover agents. Based on learning techniques, the decision-maker agent decides dynamically which agent to activate between intensification agents and crossover agents. If the intensifications agents are activated, they apply local search algorithms. During their searches, they can exchange information, as they can trigger the perturbation agent. If the crossover agents are activated, they perform recombination operations. We applied MAOMCOP to the following problems: quadratic assignment, graph coloring, winner determination and multidimensional knapsack. MAOM-COP shows competitive performances compared with the approaches of the literature

Identiferoai:union.ndltd.org:theses.fr/2016ANGE0009
Date29 April 2016
CreatorsSghir, Inès
ContributorsAngers, Université de Tunis, Hao, Jin-Kao, Ghédira, Khaled
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0342 seconds