Return to search

Guidage non-intrusif d'un bras robotique à l'aide d'un bracelet myoélectrique à électrode sèche

Depuis plusieurs années la robotique est vue comme une solution clef pour améliorer la qualité de vie des personnes ayant subi une amputation. Pour créer de nouvelles prothèses intelligentes qui peuvent être facilement intégrées à la vie quotidienne et acceptée par ces personnes, celles-ci doivent être non-intrusives, fiables et peu coûteuses. L’électromyographie de surface fournit une interface intuitive et non intrusive basée sur l’activité musculaire de l’utilisateur permettant d’interagir avec des robots. Cependant, malgré des recherches approfondies dans le domaine de la classification des signaux sEMG, les classificateurs actuels manquent toujours de fiabilité, car ils ne sont pas robustes face au bruit à court terme (par exemple, petit déplacement des électrodes, fatigue musculaire) ou à long terme (par exemple, changement de la masse musculaire et des tissus adipeux) et requiert donc de recalibrer le classifieur de façon périodique. L’objectif de mon projet de recherche est de proposer une interface myoélectrique humain-robot basé sur des algorithmes d’apprentissage par transfert et d’adaptation de domaine afin d’augmenter la fiabilité du système à long-terme, tout en minimisant l’intrusivité (au niveau du temps de préparation) de ce genre de système. L’aspect non intrusif est obtenu en utilisant un bracelet à électrode sèche possédant dix canaux. Ce bracelet (3DC Armband) est de notre (Docteur Gabriel Gagnon-Turcotte, mes co-directeurs et moi-même) conception et a été réalisé durant mon doctorat. À l’heure d’écrire ces lignes, le 3DC Armband est le bracelet sans fil pour l’enregistrement de signaux sEMG le plus performant disponible. Contrairement aux dispositifs utilisant des électrodes à base de gel qui nécessitent un rasage de l’avant-bras, un nettoyage de la zone de placement et l’application d’un gel conducteur avant l’utilisation, le brassard du 3DC peut simplement être placé sur l’avant-bras sans aucune préparation. Cependant, cette facilité d’utilisation entraîne une diminution de la qualité de l’information du signal. Cette diminution provient du fait que les électrodes sèches obtiennent un signal plus bruité que celle à base de gel. En outre, des méthodes invasives peuvent réduire les déplacements d’électrodes lors de l’utilisation, contrairement au brassard. Pour remédier à cette dégradation de l’information, le projet de recherche s’appuiera sur l’apprentissage profond, et plus précisément sur les réseaux convolutionels. Le projet de recherche a été divisé en trois phases. La première porte sur la conception d’un classifieur permettant la reconnaissance de gestes de la main en temps réel. La deuxième porte sur l’implémentation d’un algorithme d’apprentissage par transfert afin de pouvoir profiter des données provenant d’autres personnes, permettant ainsi d’améliorer la classification des mouvements de la main pour un nouvel individu tout en diminuant le temps de préparation nécessaire pour utiliser le système. La troisième phase consiste en l’élaboration et l’implémentation des algorithmes d’adaptation de domaine et d’apprentissage faiblement supervisé afin de créer un classifieur qui soit robuste au changement à long terme. / For several years, robotics has been seen as a key solution to improve the quality of life of people living with upper-limb disabilities. To create new, smart prostheses that can easily be integrated into everyday life, they must be non-intrusive, reliable and inexpensive. Surface electromyography provides an intuitive interface based on a user’s muscle activity to interact with robots. However, despite extensive research in the field of sEMG signal classification, current classifiers still lack reliability due to their lack of robustness to short-term (e.g. small electrode displacement, muscle fatigue) or long-term (e.g. change in muscle mass and adipose tissue) noise. In practice, this mean that to be useful, classifier needs to be periodically re-calibrated, a time consuming process. The goal of my research project is to proposes a human-robot myoelectric interface based on transfer learning and domain adaptation algorithms to increase the reliability of the system in the long term, while at the same time reducing the intrusiveness (in terms of hardware and preparation time) of this kind of systems. The non-intrusive aspect is achieved from a dry-electrode armband featuring ten channels. This armband, named the 3DC Armband is from our (Dr. Gabriel Gagnon-Turcotte, my co-directors and myself) conception and was realized during my doctorate. At the time of writing, the 3DC Armband offers the best performance for currently available dry-electrodes, surface electromyographic armbands. Unlike gel-based electrodes which require intrusive skin preparation (i.e. shaving, cleaning the skin and applying conductive gel), the 3DC Armband can simply be placed on the forearm without any preparation. However, this ease of use results in a decrease in the quality of information. This decrease is due to the fact that the signal recorded by dry electrodes is inherently noisier than gel-based ones. In addition, other systems use invasive methods (intramuscular electromyography) to capture a cleaner signal and reduce the source of noises (e.g. electrode shift). To remedy this degradation of information resulting from the non-intrusiveness of the armband, this research project will rely on deep learning, and more specifically on convolutional networks. The research project was divided into three phases. The first is the design of a classifier allowing the recognition of hand gestures in real-time. The second is the implementation of a transfer learning algorithm to take advantage of the data recorded across multiple users, thereby improving the system’s accuracy, while decreasing the time required to use the system. The third phase is the development and implementation of a domain adaptation and self-supervised learning to enhance the classifier’s robustness to long-term changes.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66967
Date07 May 2024
CreatorsCôté Allard, Ulysse
ContributorsGosselin, Benoit, Laviolette, François
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxv, 219 pages), application/pdf, application/zip, text/plain
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds