Return to search

Dynamique de la formation d'hydrogène moléculaire sur une poussière interstellaire

Dans le milieu interstellaire (MIS), la formation de la molécule H_2 est catalysée par un grain de poussière : H+H+grain -> grain+ H_2 Deux mécanismes principaux correspondent à cette réaction: le mécanisme Eley-Rideal (ER) et le mécanisme Langmuir-Hinshelwood (LH). Les techniques de propagation de paquets d'ondes ont été utilisées pour étudier ces deux mécanismes aux faibles températures qui règnent dans le MIS. Pour rendre possible le calcul, il a fallu utiliser une grille en L et appliquer la technique de réduction de grille dite de « mapping » sur des grilles multidimensionnelles. Ceci a permis de couvrir une gamme d'énergie de collision comprise entre 0,4meV et 46meV pour le mécanisme ER, et entre 4meV et 50meV pour le mécanisme LH. Le mécanisme ER a été étudié en géométrie colinéaire sur une surface de graphite (0001), en autorisant le mouvement d'un atome de carbone du grain. Permettre cette relaxation du substrat favorise la réaction. Toutefois le mécanisme ER reste peu efficace dans les conditions de température régnant dans le MIS, du fait d'une petite bosse de potentiel en voie d'entrée. Le mécanisme LH a lui été étudié dans toute sa dimensionnalité sur une surface plane et rigide. Le résultat principal est que ce mécanisme est très efficace : dans des conditions caractéristiques du MIS, le temps mis par un atome H pour diffuser sur le grain, rencontrer un autre atome H, et désorber en H2 est inférieur au temps typique entre deux collisions H-grain. La réaction n'a aucun effet notable sur le rapport ortho- H_2 et para- H_2. En revanche, comme dans le mécanisme ER, elle conduit à une très forte excitation vibrationnelle de H_2.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008537
Date05 November 2004
CreatorsMorisset, Sabine
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds