Un nœud est un plongement du cercle dans une variété de dimension 3. Dans la sphère S3 , les nœuds peuvent être codés combinatoirement par des diagrammes de Gauss. Ceux-ci peuvent être étudiés indépendamment, en oubliant les véritables nœuds: c'est ce qu'on appelle la théorie des nœuds virtuels. En première partie nous définissons une version générale de nœuds virtuels, dépendant d'un groupe G muni d'un morphisme à valeurs dans Z/2. Lorsque ces paramètres sont bien choisis, la théorie obtenue généralise les nœuds dans une surface épaissie quelconque (c'est-à-dire un fibré en droites réelles sur une surface). Outre l'encodage des nœuds, les diagrammes de Gauss sont aussi un outil puissant pour décrire les invariants de type fini de Vassiliev. En seconde partie, nous donnons un ensemble complet de critères pour détecter ces invariants. Notamment, le critère d'invariance sous Reidemeister III est une réponse positive à une conjecture de M.Polyak. Parmi les exemples donnés figure une nouvelle preuve et une généralisation du théorème de Grishanov-Vassiliev sur les invariants par chaînes planaires. La troisième partie est une ébauche de plan visant à trouver un algorithme pour décider si un diagramme donné dans l'anneau R × S1 représente une tresse fermée dans le tore solide, à isotopie près. La première étape est franchie, consistant à trouver un critère reconnaissant les diagrammes de Gauss des tresses fermées. Nous conjecturons que ce critère suffit pour les diagrammes à nombre minimal de croisements, et proposons des pistes dans cet objectif. La dernière partie est un travail commun avec T.Fiedler, explorant les propriétés d'objets non génériques liés à l'espace de toutes les immersions du cercle dans R3 . Cet espace est de dimension infinie, stratifié par le degré de non généricité des immersions. Alors que la théorie de Vassiliev se cantonne à l'étude des strates contenant uniquement des points doubles ordinaires, ici nous interdisons ces points doubles et autorisons uniquement un certain type de points triples. Nous montrons que l'espace qui en résulte n'est pas simplement connexe en exhibant un 1-cocycle non trivial. Une pondération de ce 1-cocycle fournit une nouvelle formule pour l'invariant de Casson des nœuds.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00936491 |
Date | 12 July 2013 |
Creators | Mortier, Arnaud |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds