Return to search

Analysis of Direct-Soldered Power Module / Heat Sink Thermal Interface for Electric Vehicle Applications

Reducing the thermal impedance between power module and heat sink is important for high-power density, low-cost inverter applications. Mounting a power module by directly soldering it onto a heat sink can significantly reduce the thermal impedance at the module / heat sink interface, as compared to the conventional method of bolting the two together with a thermal grease or some other interface materials in between. However, a soldered interface typically contains a large number of voids, which results in local hot spots. This thesis describes approaches taken to reduce voids in the solder layer through surface treatment, solder paste selection, and adjustment in solder-reflow conditions. A 15MHz scanning acoustic microscope (SAM), a non-destructive inspection tool, was used to determine the void content at the module / heat sink interface. The experimental results show that a significant reduction in thermal resistance can be achieved by reducing the void content at the soldered module / heat sink interface. Moreover, a comparison of the thermal resistances in cases using the worst soldering, which contains the largest voided area, ThermstrateTM and thermal grease are presented. Thermal performances of the modules are studied by simulation with Flotherm. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32071
Date06 May 2001
CreatorsKim, Junhyung
ContributorsElectrical and Computer Engineering, Lai, Jih-Sheng, Chen, Dan Y., Boroyevich, Dushan
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationJUNHYUNGKIM_thesis.pdf

Page generated in 0.0427 seconds