In this project we studied the formation of nanoripples in calcite and InP single crystals by continuous scanning using the nanoindenter in the ambient environment and by Argon ion irradiation under ultra high vacuum conditions, respectively. Formation of tip induced nanowear ripples is studied on a freshly cleaved calcite single crystal as a function of scanning frequency and contact load of the diamond tip. At lower loads, initiation of the ripples takes place at the bottom of the surface slope at 3 Hz scanning frequency, which continue to propagate as scanning progresses. The orientation of these ripple structures is perpendicular to the scan direction. As the number of scans increases, ripples fully develop, and their height and periodicity increase with the number of scans by merging ripples together. At 6 mu N normal load, tip induced wear occurred as the tip started removing the ripple structures with increased number of scan cycles.
As the contact load increased further, a ripple structure was not initiated and only tip induced wear occurred on the surface. At 1 Hz frequency material removal takes place as the tip moves back and forth and material slides towards the scan edges. Material removal rate increased with contact load and it is observed that the number of scans required to create a new surface is inversely proportional to the contact load. Possible mechanisms responsible for the formation of ripples at higher frequencies are attributed to the slope of the surface, piezo hysteresis,system dynamics or a combination of effects. Single crystal calcite hardness of 2.8 GPa and elastic modulus of 80 GPa were measured using nanoindentation. Evolution of nanostructures on the InP surface due to ion bombardment has been studied with scanning tunneling microscopy in UHV environment. InP crystal surfaces were irradiated by Argon ion incident beam with 3 KeV energy at an incident angle of 75 degrees.
Self-organization of the surface was studied by varying the ion fluence from 7.7E13 to 4.6E17 ions per square centimeter. The observed nanoripple morphologies have been explained based on the concept of interplay between roughening and smoothing processes. Wavelength of the nanostructures linearly increases with the logarithm of the fluence. The rms roughness is approximately linear with the logarithm of the fluence. Nanoindentation experiments were performed on InP surface before and after ion bombardment to determine variation in hardness and elastic modulus. Surface of irradiated InP has higher H and E values as the surface become amorphized after Ar+ ion bombardment.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-3194 |
Date | 01 June 2007 |
Creators | Gunda, Ramakrishna |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0024 seconds