Lignin is one of the most abundant natural polymers on Earth, and a valuable resource. Despite being widely available, only a small amount of the produced lignin is currently utilized to make high-value goods, with the majority being used for pulp mills to recover energy. However, the possibility to convert lignin into commercially viable products is presented by the rising need for sustainable and renewable resources. In the past, research has mostly concentrated on converting lignin into chemicals, materials, and biofuels; nevertheless, there has not been much advancement in practical applications. Lignin is difficult to depolymerize due to its intricate structure and resistance to degradation. To separate lignin from lignocellulosic biomass, a number of techniques have been developed, such as kraft and sulfite pulping. These techniques, though, result in lignin with various characteristics. As a result, improved lignin isolation methods are required in order to produce high-quality, pure lignin. Due to its capacity to solubilize lignocellulosic biomass and extract lignin, ionic liquid-based lignin isolation has attracted interest. Ionic liquids are environmentally friendly since they may be recycled and used again. There are still issues with toxicity, physicochemical data, and industrial-scale recovery, though. Lixea is a startup company that specializes in sustainable technology, especially lignin. They have created a novel method of fractionating lignocellulose known as Dendronic® that uses inexpensive ionic liquids to separate lignin and cellulose from biomass. Potentially, this process could result in renewable products, such as chemicals and biofuels on a large scale. Filtration of the lignin is one of the main bottlenecks operations at Lixea`s pilot plan. In this paper two different strategies; Maturing of the lignin suspension through temperature cycling and using previously isolated lignin filter cake as precipitation and filtration aid, have been tested out at the lab scale to improve the lignin filtration speed. Based on the observations in this work the heat treatment strategy is the most promising one, therefore it is recommended to test it the pilot plant to confirm the lab-scale experiments and improve the plant operation. Overall, further research and development are needed to unlock the full potential of lignin as a flexible and sustainable resource.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-96405 |
Date | January 2023 |
Creators | Alahmad Alkhalaf, Farah |
Publisher | Karlstads universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds