The presence of deposits leading to corrosion of the steam generator (SG) systems is a major contributor to operation and maintenance cost of pressurized water reactor (PWR) plants. Formation and transport of corrosion products formed due to the presence of impurities, metallic oxides and cations in the secondary side of the SG units result in formation of deposits. This research deals with the characterization of deposit samples collected from the two SG units (unit 1 and unit 2) at Comanche Peak Steam Electric Station (CPSES). X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) techniques have been used for studying the compositional and structural properties of iron oxides formed in the secondary side of unit 1 and unit 2. Magnetite (Fe3O4) was found to be predominant in samples from unit 1 and maghemite (g-Fe2O3) was found to be the dominant phase in case of unit 2. An attempt has been made to customize FTIR technique for analyzing different iron oxide phases present in the deposits of PWR-SG systems.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc5521 |
Date | 05 1900 |
Creators | Namduri, Haritha |
Contributors | Nasrazadani, Seifollah, Mirshams, Reza, Foster, Phillip R., Theimer, Robert |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Use restricted to UNT Community (strictly enforced), Copyright, Namduri, Haritha, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0022 seconds