Many bacteria use inorganic nitrogen and sulfur compounds for energy metabolism. These compounds are often toxic and so bacteria must adapt to survive their deleterious effects. Bacteria use specific proteins in order to metabolise, sense and detoxify these compounds. In this thesis protein interactions with inorganic nitrogen and sulfur compounds are examined at the mechanistic level. Intermediates in the Sox sulfur oxidation pathway are covalently attached to a cysteine on the swinging arm of the substrate carrier protein SoxYZ. An interaction between the Sox pathway enzyme SoxB and the carrier protein SoxYZ is demonstrated. A crystal structure of a trapped SoxB-SoxYZ complex at 3.3 Å resolution identifies two sites of interaction, one between the SoxYZ carrier arm and the SoxB active site channel and the other at a patch distal to the active site. The presence of a distal interaction site suggests a mechanism for promiscuous specificity in the protein-protein interactions of the Sox pathway. Using biophysical methods it is shown that SoxB distinguishes between the substrate and product forms of the carrier protein through differences in interaction kinetics and that the carrier arm-bound substrate group is able to out-compete the adjacent C-terminal carboxylate for binding to the SoxB active site. The thiosulfate dehydrogenase TsdA has an unusual His/Cys coordinated heme. TsdA catalyses oxidative conjugation of two thiosulfate molecules to form tetrathionate. Mass spectrometry and UV/visible spectroscopy are used to identify an S-thiosulfonate reaction intermediate which is covalently attached to the cysteine heme ligand. A catalytic mechanism for TsdA is proposed using a crystal structure of TsdA at 1.3 Å resolution alongside site-directed mutagenesis of active site residues. Nitric oxide is produced by the mammalian immune response to kill bacterial pathogens. Part of the killing mechanism occurs through the reaction of nitric oxide with protein-bound iron-sulfur clusters. However, the same type of reaction is also exploited by nitric oxide-sensing bacterial proteins. An infrared spectroscopy approach is developed to detect the products of iron-sulfur protein nitrosylation. Using this methodology it is shown that the presence of trace O2 strongly impacts which products are formed in these nitrosylation reactions. These observations are of physiological relevance because bacteria are often exposed to NO under aerobic conditions during an immune response.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:640055 |
Date | January 2014 |
Creators | Grabarczyk, Daniel Ben |
Contributors | Berks, Ben C.; Vincent, Kylie A. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:b6b3e3fd-620f-467d-b063-01311fa7a9a2 |
Page generated in 0.0019 seconds