Return to search

Quantum Spin Hall Effect - A new generation of microstructures / Quantum Spin Hall Effekt - Eine neue Generation an Mikrostrukturen

The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters.

Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses.

We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size.

The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm.

Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind.

The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field.
The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode.
The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity.
The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V.
The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls.

The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail.

The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-Büttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape.

Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms.

Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures. / In der vorliegenden Dissertation wurden die Ergebnisse von viereinhalb Jahren lithographischer Prozessentwicklung an (Cd,Hg)Te/HgTe/(Cd,Hg)Te Quantum Well Strukturen präsentiert. Motiviert wurde der Aufwand mit den einzigartigen Eigenschaften des zweidimensionalen Topologischen Isolators. In früheren Arbeiten von Molenkamp et al. ist gezeigt worden, dass der Stromtransport im Quantum Spin Hall (QSH) Regime durch zwei Randkanäle mit Elektronen entgegengerichteter Spin- und Propagationsrichtung erfolgt. Trotz der Vorhersage geschützten Randkanaltransports durch Zeit-Umkehr Invarianz, gab es bis zu der hier vorgenommenen Prozessoptimierung keine ungestörten Quantum Spin Hall Messungen oberhalb einer Länge von 4 µm. Deswegen wurde das Hauptaugenmerk der Entwicklung auf einen möglichst einfachen, reproduzierbaren und ungestörten Herstellungsprozess für QSH Mikrostrukturen gelegt.

Die Ergebnisse der vollständigen Überarbeitung jedes einzelnen Lithographie-Schrittes für marko- und mikroskopische Probenstrukturierung wurden in Development erläutert. Die Anpassungen wurden anhand von Elektronen-, Lichtmikroskop-Aufnahmen und wann immer möglich auch Messungen motiviert, überprüft und für besser befunden.

Es wurde aufgezeigt, dass das bisher übliche Verfahren zum ätzen der Mesa mit beschleunigen Argon-Ionen das Material auch lateral beschädigt und mit drastisch reduzierten Elektronen-Beweglichkeiten in mikroskopischen Proben einhergeht.

Ein neuartiger KI:I2:HBr nass-Ätzprozess hingegen, hat sich als nicht invasiv erwiesen. Ohne die Kristallstruktur zu zerstören lassen sich damit Mikrostrukturen herstellen, welche sich durch beispiellos hohe Beweglichkeiten und Signalgüte auszeichnen. Schwierigkeiten, wie der unregelmäßige Ätz-Start und das langsamere Ätzen der leitfähigen Schicht sind durch Konzentrations-, Design- und Flussanpassungen sukzessive gelöst worden. Unter Beachtung des diffusiven Ätz-Charakters, sorgt ein schmaler Rahmen um das Schreibfeld des Elektronen Mikroskops für eine elektrische Entkopplung der späteren Mesa innen, mit dem Elektronen-Reservoir außen. Damit wird sichergestellt, dass die Leitfähigkeit des Quantentroges in der Redoxreaktion des Ätzens eine untergeordnete Rolle spielt. Durch den regulierbaren Fluss einer Schlauchpumpe lassen sich so reproduzierbar saubere Mesas auch unterhalb 300 nm Höhe herstellen. Die PMMA Ätzmaske kann rückstandsfrei entfernen werden.

Über die ersten Versuche, bis hin zum letztendlichen Prozess, wurde dem Leser dabei das notwendige Wissen und Verständnis zur Durchführung der Mikrostrukturierung an die Hand gegeben. Unter Beachtung der charakteristischen Eigenheiten des nasschemischen Prozesses, lassen sich so nahezu alle Mesa-Formen innerhalb eines 200x200 µm2 Schreibfeldes realisieren.

Anhand von Hall-Messungen an Kontrollproben, wurde die sukzessive Erhöhung der Probenqualität durch den Ätzprozess und die vollständige Überarbeitung der darauf folgenden Lithographie-Prozesse bewiesen. Mit mehr und mehr Physik in den Messungen haben sich selbst kleine Auswirkungen des Lithographie-Prozesses auf die Probeneigenschaften testen lassen. Die folgenden Verbesserungen tragen maßgeblich zu diesem Ergebnis bei. Hier angewendet auf Mikro-Hall-Bars, lassen sich die Prozesse für die Herstellung fast jedweder Struktur auf (Cd,Hg)Te/HgTe anpassen.

Der optische positiv Photo-Lack ECI 3027 kann sowohl als Nass- und auch Trockenätzmaske verwendet werden. Mit einer minimalen Auflösung größer 1 µ m wurde er hier eingesetzt, um Strukturen um das Elektronenmikroskop-Schreibfeld zu ätzen.
Der PMMA Doppellagen Resist ist dick und weist nach dem Entwickeln ein unterhöhltes Lackprofil auf. Dies erlaubt ihn zuerst zum Heranätzen und dann zum Metallisieren der Ohmschen Kontakte zu nutzen. Bis zu 300 nm Metall können dabei ohne Überhöhungen in-situ und selbstjustierend aufgebracht werden. Es wurde gezeigt, dass Kontakte nahe der Hall-Bar bis unterhalb der späteren Gate-Elektrode, in höheren Magnetfeldern nicht zu Störungen der Messung führen.

Der MIBK Reinigungs Schritt vor dem Aufbringen der Gate-Elektrode entfernt PMMA Rückstände vorheriger Prozesse. In Hall-Messungen wurde gezeigt, dass dies die Homogenität des Gate-Einflusses deutlich verbessert.

Der neuartige Tieftemperatur HfO2 ALD Prozess ermöglicht Isolator Wachstum auf Photo-Resist und PMMA Lift-off Masken. Dies wiederum ermöglicht eine Gate-Metallisierung direkt im Anschluss. Dadurch lassen sich auch kleine Gate-Elektroden mit homogenem Potential-Einfluss herstellen, welche reproduzierbar Spannungen bis +-10 V aushalten.

Der optische negativ Photo-Lack ARN 4340 ermöglicht das Heranätzen und Metallisieren von Ohmschen Kontakten in Strukturgrößen größer 1 µm. Das ebenfalls unterhöhlte Lackprofil erlaubt dabei die Aufbringung von bis zu 500 nm dicken Schichten und einen problemlosen Lift-off.

Die unternommenen Anstrengungen haben dabei zu den bisher Besten und Detailsreichsten Messungen von Hall-Plateaus und Shubnikov-De Haas Oszillationen in (Cd,Hg)Te/ HgTe Mikrostrukturen geführt.

Messungen mit einem klaren QSH Signal im Längswiderstand von mehreren Mikro-Hall-Bars wurden präsentiert. Nach jahrelangen Bemühungen weisen diese Proben erstmalig wieder einen Bandlücken-Widerstand nahe der erwarteten Quantisierung von zwei Randkanälen auf.

Es wurde aufgezeigt, dass die vermeintliche geschützten Randzustände durchaus rück-streuen. Mit der Implementierung von Streuern im Landauer-Büttiker Formalismus für Randkanaltransport lassen sich Abweichungen unter- und oberhalb der erwarteten 12.9 kΩ begründen. Als mögliche Ursachen wurden Dichte-Inhomogenitäten ausgemacht, welche in Kondo-, Wechselwirkungs- und Rashba-Rückstreuprozessen resultieren. Im komplexen Zusammenspiel von Wechselwirkung, Tunnelprozessen und Spin-Dephasierung, der unbekannten Verteilung von Inhomogenitäten, ihrer Größe und Dichte sowie der Feldabhängig-keit aller Parameter, hat sich keiner der diskutierten Mechanismen als dominant bewiesen. In noch nie dagewesenen Details erwies sich die Gate- und Magnetfeldabhängigkeit des QSH Signals als ein Fingerabdruck der hintergründigen Potential-Landschaft.

Die Signale von zwei unterschiedlichen Proben sind Temperatur- und Magnetfeldabhängig untersucht worden. Dabei haben mehrere Argumente zu der Schlussfolgerung geführt, dass unterschiedliche Rückstreumechanismen in den Proben dominieren:

Mit einem flachen QSH Plateau in der einen (QC0285), und in Gate-Spannung oszillierender Merkmale auf dem QSH Signal der anderen Probe (Q2745), zeigen sich erste Unterschiede bereits in den Gate-Messungen.
In Temperatur-abhängigen Messungen erweist sich deren QSH Signal zwar als stabil bis 11\,K, folgt dann aber ΔR = Tα mit α = 1/4 in QC0285 und α = 2 in Q2745.
Im Magnetfeld bleibt die Bandlücke in QC0285 bis zum kritischen Feld der Invertierungsaufhebung Randkanal-Transport dominiert. Die Oszillierenden Merkmale auf dem QSH Signal in Q2745 dagegen, reagieren schon auf kleine Felder mit einer Erhöhung im Widerstand.

Die unvergleichliche Qualität der hier präsentierten Hall-Messungen und QSH Signale und das bis ins letzte Detail optimierte Herstellungsverfahren, rechtfertigen es von einer neuen Generation an QSH Mikrostrukturen zu sprechen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:16821
Date January 2018
CreatorsBendias, Michel Kalle
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0041 seconds