Quantencomputer können manche Probleme deutlich effizienter lösen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekohärenzzeit, weshalb die Lebenszeit der Quantenzustände einen limitierenden Faktor darstellt. Topologisch geschützte Anregungen, wie Majorana-Fermionen, könnten hingegen dieses Hindernis überwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Phänomen aufweisen. Daher ist das Verständnis der elektronischen Eigenschaften für solche Verbindungen von großer Bedeutung.
In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfläche und topologischem Oberflächenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern überprüft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgeschützten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgelöste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren.
Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi$_{2}$Se$_{2}$ untersucht, der eine vergleichbare Übergangstemperatur besitzt. Anhand diesem werden die gängigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie für supraleitende Proben vorgestellt und die Leistungsfähigkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein $s$-Wellencharakter des Paarungsmechanismus sowie die Formation eines für Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern.
Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ begutachtet, für die eindeutig ein TSS bestätigt wird. Allerdings weisen beide Materialien keine Oberflächensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfläche vom Volumen durch Bandverbiegung zu erklären ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe führen jedoch zu supraleitenden Spitzen, die wesentlich erhöhte Werte für die kritische Temperatur und das kritische Feld zeigen.
Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), für den der Reinigungsprozess erläutert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes nötig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberflächenresonanz zum Vorschein bringen. Hochaufgelöste Messungen lassen eine durch die BCS-Theorie gut repräsentierte Struktur der supraleitenden Energielücke erkennen. Magnetfeldabhängige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zukünftig als Ausgang für das Wachstum von topologischen Supraleitern herangezogen werden. / Quantum computers are able to solve certain problems a lot more efficiently than classical processors. However, current realizations lack of a suitable decoherence \mbox{time} resulting in insufficient lifetimes of quantum states as the major limiting factor. Topological protected excitations such as Majorana fermions living in topological superconductors show great potential to overcome this obstacle. Since there exists only a small amount of materials with these characteristics the understanding of the electronic properties of such compounds is very important.
In this thesis, the coexistence of a topological surface state (TSS) and superconductivity at the sample's surface of potential topological superconductors is studied. These two conditions must be fulfilled for the formation of topological superconductivity in time reversal invariant systems. For this purpose, Landau level spectroscopy and quasiparticle interference are carried out on Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ to verify the TSS at the Fermi energy. Transport measurements showed superconductivity in the bulk for both materials. High resolution spectroscopy experiments at the Fermi energy are performed to analyze the superconductivity.
For interpretation of these data, we study the Ni-based heavy fermion superconductor TlNi$_{2}$Se$_{2}$ with a comparable transition temperature to the above mentioned compounds. In this context, the common measuring methods of scanning tunneling microscopy and spectroscopy for superconducting samples are presented and the performance capability of our experimental setup is demonstrated. In consistence with the literature, we find an $s$-wave pairing mechanism and the formation of an Abrikosov lattice typical for type~II superconductors in small external fields.
The following part of this work is the investigation of the potential topological superconductors Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ that clearly confirm the presence of a TSS on both materials. No surface superconductivity can be discovered on both compounds presumably caused due to band bending thus leading to a decoupling of the surface from the bulk. However, unintentional collisions between tip and sample lead to the formation of superconducting tips with considerably higher values for the critical temperature and field as compared to the bulk results.
In the last paragraph, the superconducting substrate Nb(110) is characterized. Firstly, a cleaning procedure including flashing the sample to temperatures close to the melting point is necessary to remove the oxygen reconstruction that has been formed at ambient conditions. A surface resonance is found upon analyzing the electronic properties.
High resolution spectroscopy measurements lead to a superconducting gap in good agreement with the BCS theory. Additionally, magnetic field dependent experiments show an anisotropy of the pair potential accordingly to the crystal symmetry. These findings confirm that Nb(110) shows great potential as a superconducting substrate for growing topological superconductors in the future.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:18059 |
Date | January 2019 |
Creators | Wilfert, Stefan |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0135 seconds