Return to search

Reflexões e numero de cobertura de arvores homogeneas e grupos de automorfismos de arvores semi-homogeneas

Orientadores: Marcelo Firer, Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T23:33:46Z (GMT). No. of bitstreams: 1
Talpo_HumbertoLuiz_D.pdf: 1408389 bytes, checksum: b11f884cbf1e05f81138a8e91a5980dc (MD5)
Previous issue date: 2006 / Resumo: Seja G uma árvore homogênea e Aut(G) seu grupo de automorfismos. Um automorfismo f Î Aut(G) é par se d(f(x),x) º0 mod 2 para todo vértice x Î G, onde d(.,.) é a função distância definida pelo comprimento do menor caminho ligando os vértices. O conjunto Aut+(G) de todos os automorfismos pares é um subgrupo de índice 2 em Aut(G). Definimos uma geodésica g Ì G como um subgrafo isomorfo a Z (onde Z é visto como um grafo que possui arestas unindo inteiros consecutivos). Uma reflexão em uma geodésica g é um automorfismo involutivo f (f² =1) tal que f(x) = x se, e somente se, x Î G. Denotamos por R o conjunto de todas as reflexões em geodésicas. Neste trabalho (Capítulo 2) provamos que, dada uma árvore homogênea de grau par G, o número de cobertura de Aut+(G) pelas reflexões em geodésicas é 11, no seguinte sentido: dado f Î Aut+(G) existem f1, f2,... fk com k £ 11, tais que f(x) = fk °fk-1°...°f1(x) para todo vértice x em G. Além disso, considerando árvores homogêneas, sabemos que o grupo de automorfismos é completo e o subgrupo de automorfismos pares é simples. Flexibilizamos a condição de homogeneidade e conseguimos demonstrar (Capítulo 3) para o caso de árvores semi-homogêneas, que o grupo de automorfismos é simples e completo / Abstract: Let G be a homogeneous tree and Aut(G) its group of automorphism. An automorphism Î Aut(G) is said to be even if d(f(x),x) º0 mod 2 for every vertex x Î G of , where d(.,.) is the canonical distance function defined by the minimum length of paths connecting the vertices. The set Aut+(G) of all even automorphism is a subgroup of index 2 in Aut(G). We define a geodesic g Ì G as a subtree isomorphic to the standard tree of the integers Z, that is, a homogeneous subtree of degree 2. A reflection in a geodesic g is an involutive automorphism f (f² =1) such that f(x) = x if x Î G. We denote by R the set of all reflections in geodesics. In this work (Chapter 2) we prove that, for every even degree tree G, the covering number of Aut+(G) by reflections in geodesics is 11, in the sense that give f Î Aut+(G) there are f1, f2,... fk with k £ 11, such that f(x) = fk °fk-1°...°f1(x) for every vertex x in G.Moreover, if we consider homogeneous trees we know that automorphisms group is complete and the even automorphisms subgroup is simple. We vary the homogeneous condition and we prove that (Chapter 3) for the semi-homogeneous trees, the automorphisms group is simple and complete / Doutorado / Doutor em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/305924
Date03 October 2006
CreatorsTalpo, Humberto Luiz
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, San Martin, Luiz Antonio Barrera, 1955-, Firer, Marcelo, 1961-, Vieira, Ana Cristina, Souza, Simone Dantas de, Carmelo, Emerson Luiz do Monte, Santos, José Plínio de Oliveira
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format54f., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds