Return to search

Contribution des biofilms phototrophes d'écosystèmes aquatiques continentaux aux flux et fractionnements isotopiques des éléments en trace métallique (cuivre, zinc) / Contribution of freshwater phototrophic biofilms to trace element fluxes and their isotopic fractionation (copper, zinc)

La compréhension des mécanismes qui contrôlent le transfert des éléments en traces métalliques (ETM) dans les hydro-systèmes est fondamentale car ceux-ci constituent des contaminants toxiques potentiels pour l'environnement et l'Homme. Dans ces travaux, la contribution des biofilms phototrophes, principaux acteurs du fonctionnement écologique et biogéochimique des eaux courantes continentales, a été évaluée dans le transfert et le fractionnement isotopique des ETM choisis, le cuivre (Cu) et le zinc (Zn). L'objectif est de mieux appréhender, via le couplage géochimique, microbiologique et écologique, les effets de l'exposition de biofilms aux ETM, conduite en conditions contrôlées, tant sur le comportement des ETM que la réponse de la communauté microbienne. Les expérimentations de 96 h d'exposition d'un biofilm mature aux ETM en milieux fermés et ouverts montrent un fractionnement isotopique opposé entre les processus physico-chimiques et biologiques sollicités. L'adsorption induit un enrichissement du biofilm en isotopes lourds par rapport à la solution avec un facteur d'enrichissement de +1,1±0,3 ‰ pour le Cu et de +1,2±0,4 ‰ pour le Zn. Inversement, le fractionnement isotopique induit lors de l'incorporation du Cu et du Zn dans le biofilm varie avec un facteur d'enrichissement allant de -0,6 à +0,8 ‰ pour le Cu et de +0,1 à +0,5 ‰ pour le Zn. Les analyses in-situ XAS (au seuil K du Cu) montrent que l'enrichissement en isotopes légers lors de l'incorporation du Cu est contrôlé par une réduction du Cu(II) en Cu(I). La variabilité du fractionnement isotopique lors de l'incorporation est expliquée par les différents processus intervenant au sein de la matrice du biofilm (diffusion, adsorption sur les groupes fonctionnels de la matrice d'exopolymères et à la surface des cellules, incorporation intracellulaire). Lors de l'excrétion de ces ETM, le biofilm induit aussi un fractionnement opposé et différent en fonction de la nature de l'ETM. La fraction métallique désorbée par le biofilm lors des premières heures est enrichie en isotopes légers de Zn et en isotopes lourds de Cu par rapport au biofilm avec un enrichissement variant respectivement entre -1,4 et 0 ‰ et entre +0,8 et +0,5 ‰. Les mécanismes d'efflux et de diffusion diminuent la magnitude de l'enrichissement et enduisent un enrichissement de la fraction excrétée par rapport au biofilm compris entre -0,7 et -0,3 ‰ pour le Zn et entre -0,36 et +0,35 ‰ pour le Cu. Ces résultats sont également obtenus dans le cadre d'une étude dynamique du fractionnement isotopique sur deux cycles circadiens consécutifs en système ouvert. Les études du fractionnement isotopique en fonction de la croissance du biofilm en relation avec l'évolution des communautés durant 59 jours de culture montrent une dépendance du fractionnement isotopique à la diversité des communautés et à son évolution temporelle. Le biofilm induit un enrichissement en isotopes lourds de +0,5±0,1 ‰ au 24ième jour qui diminue avec la diminution du rapport de la surface du biofilm sur son volume pour atteindre +0,0±0,3 ‰ au 59ième jour. Pour le Zn, en fonction de la diversité algale, la croissance du biofilm induit soit un fractionnement négatif d'une valeur moyenne de -0,16±0,04 ‰, soit n'induit pas de fractionnement entre le 24ième et 59ième jour (-0,1 <-66Zn(biofilm-solution) <+0,1 ‰). Cette étude reflète la complexité des processus biologiques associés aux biofilms phototrophes. Ainsi, l'utilisation des isotopes pour tracer les processus contrôlés biologiquement lors du transport du Cu et du Zn dans les cours d'eau demande i) la connaissance du temps de résidence du métal dans le biofilm, ii) le degré d'assimilation du métal dans la biomasse par rapport à son adsorption en surface, et iii) les différentes réactions élémentaires intervenant dans le biofilm. / Understanding mechanisms that control the metal trace elements (MTE) transfer in aquatic systems is fundamental because MTE are potential toxic contaminants to the environment and human populations. In this work, the contribution of benthic microbial aggregates (phototrophic biofilms), main actors of the ecological functioning and biogeochemistry of freshwater, was evaluated by the transfer and isotopic fractionation of selected two toxic and potentially essential metals, Cu and Zn. The aim is to better understand, via the coupling between different approaches (geochemical, isotopic, structural, microbiological, ecotoxicological), the relation between MTE concentration and isotope signature in solution and within the biofilm, depending on environmental conditions and the microbial community response. Sorption by a mature phototrophic biofilm of MTE during 96 h exposure in batch and open systems reactors exhibits opposite isotopic fractionation between physico-chemical and biological processes. The adsorption induces an enrichment in heavy isotopes of the biofilm relative to the solution during metal complexation with the surface functional groups with an enrichment factor of +1.1±0.3‰ for Cu and +1.2±0.4‰ for Zn. Conversely, the isotopic fractionation during Cu and Zn incorporation inside the biofilm is variable with an enrichment factor between the biofilm and the solution ranging from -0.6 to +0.8 ‰ for Cu and +0.1 to +0.5‰ for Zn. In situ X-ray Absorption Spectroscopy analysis of Cu chemical and structural status in the biofilm show that the enrichment in light isotopes during Cu incorporation is controlled by the reduction of Cu(II) in Cu(I). The variability of isotopic fractionation during incorporation are explained by different processes involved in the biofilm matrix (diffusion, adsorption by the functional groups of the exopolymeric matrix and at the surface of the cells, intracellular incorporation). During ETM excretion from the biofilm into the solution, contrasting fractionation of Cu and Zn is observed. The metal fraction desorbed by the biofilm at the beginning of excretion is enriched in lighter isotopes of Zn and in heavy isotope of Cu compared to the biofilm with an enrichment ranging from 0 to -1.4‰ and from +0.8 to +0.5‰ for Zn and Cu, respectively. Active efflux and diffusion processes decrease the isotopic enrichment magnitude inducing an enrichment of the excreted fraction compared to the biofilm ranging from -0.7 and -0.3‰ for Zn and from -0.36 and +0.35‰ for Cu. The isotopic results found for a dynamic study of Cu and Zn isotopic fractionation on two consecutive circadian cycles in open system are in general agreement with our 96 h sorption and excretion experiments. The isotopic fractionation experiments during the biofilm growth in relation to the evolution of communities (ecological succession) over 59 days exhibit a relationship between metallic isotopic fractionation and the community diversity and its temporal evolution. However, a general trend is observed for Cu with an enrichment in heavy isotopes of +0.5±0.1‰ after 24th day of growth that decreases with the decrease of the biofilm's surface/volume ratio to reach a value of +0.0±0.3 ‰ at the 59th day of growth. For Zn, in relation to algal diversity, the growth of the biofilm produces whether a negative isotopic fractionation equal to -0.16±0.04‰, or does not produce any isotopic fractionation between the 24th and 59th days of growth (-0.1<-66Zn(biofilm-solution)<+0.1 ‰).This study reflects the complexity of biological processes associated with phototrophic biofilms. The use of stable isotopes to trace the processes controlled biologically during transport of Cu and Zn in surface waters requests i) knowledge of metal residence time in the biofilm, ii) the degree of assimilation of the metal in biomass compared to its surface adsorption, and iii) the various elementary reactions involved in the biofilm.

Identiferoai:union.ndltd.org:theses.fr/2016TOU30391
Date26 May 2016
CreatorsCoutaud, Aude Margot
ContributorsToulouse 3, Pokrovsky, Oleg, Rols, Jean-Luc
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds