Return to search

Stable evaluation of the Jacobians for curved triangles

In the adaptive finite element method, the solution of a p.d.e. is approximated
from finer and finer meshes, which are controlled by error estimators. So,
starting from a given coarse mesh, some elements are subdivided a couple of
times. We investigate the question of avoiding instabilities which limit this
process from the fact that nodal coordinates of one element coincide in more
and more leading digits. In a previous paper the stable calculation of the
Jacobian matrices of the element mapping was given for straight line triangles,
quadrilaterals and hexahedrons. Here, we generalize this ideas to linear and
quadratic triangles on curved boundaries.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18502
Date11 April 2006
CreatorsMeyer, Arnd
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
SourcePreprintreihe des Chemnitzer SFB 393, 03-05
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds