Return to search

Some links between discrete and continuous aspects in dynamic games / Quelques liens entre aspects discrets et continus dans jeux dynamiques

Cette thèse étudie les liens entre a) les jeux en temps discret et continu, et b) les jeux à très grand nombre de joueurs identiques et les jeux avec un continuum de joueurs. Une motivation pour ces sujets ainsi que les contributions principales de cette thèse sont présentées dans le Chapitre 1. Le reste de la thèse est organisé en trois parties. La Partie I étudie les jeux différentiels à somme nulle et à deux joueurs. Nous décrivons dans le Chapitre 3 trois approches qui ont été proposées dans la littérature pour établir l’existence de la valeur dans les jeux différentiels à deux joueurs et à somme nulle, en soulignant les liens qui existent entre elles. Nous fournissons dans le Chapitre 4 une démonstration de l’existence de la valeur à l’aide d’une description explicite des stratégies ε optimales. Le Chapitre 5 établit l’équivalence entre les solutions de minimax et les solutions de viscosité pour les équations de Hamilton-Jacobi-Isaacs. La Partie II porte sur les jeux à champ moyen en temps discret. L’espace d’action est supposé compact dans le Chapitre 6, et fini dans le Chapitre 7. Dans les deux cas, nous obtenons l’existence d’un ε- équilibre de Nash pour un jeu stochastique avec un nombre fini de joueurs identiques, où le terme d’approximation tend vers zéro lorsque le nombre de joueurs augmente. Nous obtenons dans le Chapitre 7 des bornes d’erreur explicites, ainsi que l’existence d’un ε-équilibre de Nash pour un jeu stochastique à durée d’étape évanescente et à un nombre fini de joueurs identiques. Dans ce cas, le terme d’approximation est fonction à la fois du nombre de joueurs et de la durée d’étape. Enfin, la Partie III porte sur les jeux stochastiques à durée d’étape évanescente, qui sont décrits dans le Chapitre 8. Il s’agit de jeux où un paramètre évolue selon une chaîne de Markov en temps continu, tandis que les joueurs choisissent leurs actions à des dates discrètes. La dynamique en temps continu dépend des actions des joueurs. Nous considérons trois évaluations différentes pour le paiement et deux structures d’information : dans un cas, les joueurs observent les actions passées et le paramètre, et dans l’autre, seules les actions passées sont observées. / In this thesis we describe some links between a) discrete and continuous time games and b) games with finitely many players and games with a continuum of players. A motivation to the subject and the main contributions are outlined in Chapter 2. The rest of the thesis is organized in three parts: Part I is devoted to differential games, describing the different approaches for establishing the existence of the value of two player, zero sum differential games in Chapter 3 and pointing out connections between them. In Chapter 4 we provide a proof of the existence of the value using an explicit description of ε-optimal strategies and a proof of the equivalence of minimax solutions and viscosity solutions for Hamilton-Jacobi-Isaacs equations in Chapter 5. Part II concerns discrete time mean field games. We study two models with different assumptions, in particular, in Chapter 6 we consider a compact action space while in Chapter 7 the action space is finite. In both cases we derive the existence of an ε-Nash equilibrium for a stochastic game with finitely many identical players, where the approximation error vanishes as the number of players increases. We obtain explicit error bounds in Chapter 7 where we also obtain the existence of an ε-Nash equilibrium for a stochastic game with short stage duration and finitely many identical players, with the approximation error depending both on the number of players and the duration of the stage. Part III is concerned with two player, zero sum stochastic games with short stage duration, described in Chapter 8. These are games where a parameter evolves following a continuous time Markov chain, while the players choose their actions at the nodes of a given partition of the positive real axis. The continuous time dynamics of the parameter depends on the actions of the players. We consider three different evaluations for the payoff and two different information structures: when players observe the past actions and the parameter and when players observe past actions but not the parameter.

Identiferoai:union.ndltd.org:theses.fr/2014PA066271
Date04 November 2014
CreatorsMaldonado Lopez, Juan Pablo
ContributorsParis 6, Sorin, Sylvain
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds