GERALDO, A. Propriedades de Jordan em anéis de grupo. 2019. Dissertação (Mestrado) - Insti- tuto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2019. Neste trabalho estudamos alguns resultados a respeito do conjunto dos elementos que são simétricos sobre uma involução, orientada ou não, de um anel de grupo. Dado um anel de grupo RG, onde R é comutativo e com elemento identidade 1, e uma involução orientada # ; apre- sentamos as condições necessárias e suficientes sobre R e G para que o subconjunto (RG) + = { RG # = } seja anticomutativo, ou equivalentemente, o produto de Jordan seja trivial em (RG) + . Além disso, estudamos um caso de nilpotência de Jordan no anel de grupo RG e no seu subconjunto (RG) + , para o caso onde a involução não possui orientação. / In this work we study some results regarding the set of elements that are symmetrical about an involution, oriented or not, in a group ring. Given a group ring RG, where R is commutative and with identity element 1, and an oriented involution # we present the necessary and sufficient conditions on R and G so that the set (RG) + = { RG # = } is anticomutative, or equivalently, the Jordan product is trivial in (RG) + . In addition we study a case of Jordans nilpotency in the group RG and its subset (RG) + , for the case where involution has no orientation.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24082019-195149 |
Date | 04 July 2019 |
Creators | Geraldo, Anderson |
Contributors | Rodrigues, Rodrigo Lucas |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0201 seconds