Return to search

Parameter extraction in lithium ion batteries using optimal experiments / Parameterbestämning av litium-jonbatterier med hjälp av optimala experiment

Lithium-ion (Li-Ion) batteries are widely used in various applications and are viable for automotive applications. The effective management of Li-Ion batteries in battery electric vehicles (BEV) plays a crucial role in performance and range. One can achieve good performance and range by using efficient battery models in battery management systems (BMS). Hence, these battery models play an essential part in the development process of battery electric vehicles. Physics-based battery models are used for design purposes, control, or to predict battery behaviour, and these require much information about materials and reaction and mass transport properties. Model parameterization, i.e., obtaining model parameters from different experimental sets (by fitting the model to experimental data sets), can be challenging depending on model complexity and the type and quality of experimental data. Based on the idea of parameter sensitivity, certain current/voltage data sets could be chosen that theoretically has a more considerable sensitivity for a given model parameter that is of interest to extract. In this thesis work, different methods for extracting model parameters for a Nickel-Manganese-Cobalt (NMC) battery composite electrode are experimentally tested and compared. Specifically, model parameterization using \emph{optimal experiments} based on performed parameter sensitivity analysis has been benchmarked against a 1C discharge test and low rate pulse tests. The different parameter sets obtained have then been validated on a drive cycle and 2C pulse tests. Comparing the methods show some promising results for the optimal experiment design (OED) method, but consideration regarding the state of charge (SOC) dependencies, the number of parameters has to be further evaluated. / Litiumjonbatterier (Li-jon) används i olika applikationer och är ett bra alternativ förfordonsapplikationer. Den effektiva hanteringen av litiumjonbatterier i elbilar har en viktigroll för fordonens prestanda och räckvidd. Man kan nå bra prestanda och räckviddgenom att använda bra batterimodeller i batteriets övervakningssystem (BMS). Därförspelar dessa batterimodeller en viktig roll i utvecklingen av elbilar. Fysikbaseradebatterimodeller används för design, reglering eller för att prediktera beteendet hos batteriet,vilket kräver mycket information om material samt dess reaktion och andra beskaffenheter.Modellparametrisering, dvs. att införskaffa modellparametrar från olika experiment (genom attanpassa modell till experimentella data) kan vara utmanande beroende på modellkomplexitetoch typen samt kvalitén på experimentell data. Baserat på idén om parametersensitivitet kan data om ström och spänning väljas så att de teoretiskt har mer sensitivitet för engiven modellparameter som är av intresse att extrahera. I detta examensarbete testas ochjämförs olika metoder för att extrahera modellparametrar för en Nickelmangankobolt (NMC)batterielektrod. Mer specifikt, modellparametrisering genom optimala experiment baseradepå genomförd parametersesitivitetsanalys jämförts med 1C urladdningstest och låg nivåpulstest. Jämförande av metoderna visar goda resultat för OED metoden men flera parametrarmåste fortsatt utvärderas gällande laddningstatusberoenden (SOC).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-302768
Date January 2021
CreatorsPrathimala, Venu Gopal
PublisherKTH, Fordonsdesign
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2021:288

Page generated in 0.0083 seconds