Return to search

Sintonia automática do filtro de kalman unscented. / Automatic tuning of the unscented Kalman filter.

O filtro de Kalman estendido tem sido a mais popular ferramenta de filtragem não linear das últimas quatro décadas. É de fácil implementação e apresenta baixo custo computacional. Nos casos nos quais as não linearidades do sistema dinâmico são significativas, porém, o filtro de Kalman estendido pode apresentar resultados insatisfatórios. Nessas situações, o filtro de Kalman unscented substitui com vantagens o filtro de Kalman estendido, pois pode apresentar melhores estimativas de estado, embora ambos os filtros exibam complexidade computacional de mesma ordem. A qualidade das estimativas de estado do filtro unscented está intimamente ligada à sintonia dos parâmetros que controlam a transformada unscented. A versão escalada dessa transformada exibe três parâmetros escalares que determinam o posicionamento dos pontos sigma e, consequentemente, afetam diretamente a qualidade das estimativas produzidas pelo filtro. Apesar da importância do filtro de Kalman unscented, a sintonia ótima desses parâmetros é um problema para o qual ainda não há solução definitiva. Não há nem mesmo recomendações heurísticas que garantam o bom funcionamento do filtro unscented na maior parte dos problemas tratáveis por meio de filtros Gaussianos. Essa carência e a importância desse filtro para a área de filtragem não linear fazem da busca por mecanismos de sintonia automática do filtro unscented área de pesquisa ativa. Assim, este trabalho propõe técnicas para sintonia automática dos parâmetros da transformada unscented escalada. Além da sintonia desses parâmetros, também é abordado o problema de sintonizar as matrizes de covariância dos ruídos de processo e de medida demandadas pelo modelo do sistema dinâmico usado pelo filtro unscented. As técnicas propostas cobrem então a sintonia automática de todos os parâmetros do filtro. / The extended Kalman filter has been the most popular nonlinear filter of the last four decades. It is easy to implement and exhibits low computational cost. When nonlinearities are significant, though, the extended Kalman filter can display poor state estimation performance. In such situations, the unscented Kalman filter can yield better state estimates, while displaying the same order of computational complexity as the extended Kalman filter. The quality of the state estimates produced by the unscented Kalman filter is directly influenced by the tuning of the scalar parameters that govern the unscented transform. The scaled version of the unscented transform features three scalar parameters that determine the positioning of the sigma points, thus directly affecting the filter state estimation performance. Despite the importance of the unscented Kalman filter, the optimal tuning of the scaled unscented transform parameters is still an open problem. This work hence discusses algorithms for the automatic tuning of the unscented transform parameters. The discussion includes the tuning of the needed noise covariance matrices, thus covering the automatic tuning of all parameters of the unscented Kalman filter.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13072016-150717
Date26 November 2015
CreatorsLeonardo Azevedo Scardua
ContributorsJosé Jaime da Cruz, Helio Koiti Kuga, Roberto Vieira da Fonseca Lopes, Vitor Heloiz Nascimento, Flavio Celso Trigo
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds