Copula functions represent a methodology which can describe the dependence structure of multi-dimension random variable, and has recently become the most significant new tool to handle risk factors in finance such as Value-at Risk( VaR) which was probably the most widely used risk measure in financial institutions. In this paper, Copula and the forecast function of Garch model are well combined, and a new method Conditional-Copula-Garch is built for measure the dependence of financial data and compute the VaR of portfolios. Copula-Garch models allow for very flexible joint distribution by splitting the marginal behaviors form the dependence relation unlike the traditional approaches for the estimation VaR, such as variance-covariance, and the Monte Carlo approaches whereas demand the joint distribution to be known. This work presents an application of the Copula-Garch model in the estimation of VaR of a portfolio composed by NASDAQ and TAIEX (Taiwan stock exchanged capitalization weighted index) stock indices.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0702107-162427 |
Date | 02 July 2007 |
Creators | Lin, Wei-fu |
Contributors | Lo Henry Y., David Shyu, Huang Jen-Jsung, Wang Chou Wen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0702107-162427 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0017 seconds