Return to search

ESTIMATION IN PARTIALLY LINEAR MODELS WITH CORRELATED OBSERVATIONS AND CHANGE-POINT MODELS

Methods of estimating parametric and nonparametric components, as well as properties of the corresponding estimators, have been examined in partially linear models by Wahba [1987], Green et al. [1985], Engle et al. [1986], Speckman [1988], Hu et al. [2004], Charnigo et al. [2015] among others. These models are appealing due to their flexibility and wide range of practical applications including the electricity usage study by Engle et al. [1986], gum disease study by Speckman [1988], etc., wherea parametric component explains linear trends and a nonparametric part captures nonlinear relationships.
The compound estimator (Charnigo et al. [2015]) has been used to estimate the nonparametric component of such a model with multiple covariates, in conjunction with linear mixed modeling for the parametric component. These authors showed, under a strict orthogonality condition, that parametric and nonparametric component estimators could achieve what appear to be (nearly) optimal rates, even in the presence of subject-specific random effects.
We continue with research on partially linear models with subject-specific random intercepts. Inspired by Speckman [1988], we propose estimators of both parametric and nonparametric components of a partially linear model, where consistency is achievable under an orthogonality condition. We also examine a scenario without orthogonality to find that bias could still exist asymptotically. The random intercepts accommodate analysis of individuals on whom repeated measures are taken. We illustrate our estimators in a biomedical case study and assess their finite-sample performance in simulation studies.
Jump points have often been found within the domain of nonparametric models (Muller [1992], Loader [1996] and Gijbels et al. [1999]), which may lead to a poor fit when falsely assuming the underlying mean response is continuous. We study a specific type of change-point where the underlying mean response is continuous on both left and right sides of the change-point. We identify the convergence rate of the estimator proposed in Liu [2017] and illustrate the result in simulation studies.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:statistics_etds-1037
Date01 January 2018
CreatorsFan, Liangdong
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Statistics

Page generated in 0.0026 seconds