Return to search

KK-théorie équivariante et opérateur de Julg-Valette pour les groupes quantiques

Cette thèse s'inscrit dans l'étude de la KK-théorie équivariante par rapport à un groupe quantique localement compact. On généralise notamment certaines notions et certains résultats connus dans le cas des groupes : théorème de stabilisation, morphisme de descente, théorème de Green-Julg, K-moyennabilité. On cherche ensuite à introduire des outils géométriques utiles dans ce contexte, et on associe notamment à un groupe quantique discret et à un produit libre amalgamé de groupes quantiques discrets des objets qui peuvent s'interpréter comme des arbres quantiques. On étudie en particulier les opérateurs de Julg-Valette associés aux groupes quantiques libres de Wang-Banica : ce cas présente de nombreuses nouveautés par rapport au cadre classique, la principale étant la non-involutivité de l'opérateur de retournement des arêtes qui rend nécessaire la construction d'une représentation additionnelle du groupe quantique discret pour obtenir un élément de KK-théorie.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00001809
Date19 December 2002
CreatorsVergnioux, Roland
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds