Return to search

Broadband Coherent Anti-Stokes Raman Spectroscopy: A Comprehensive Approach to Analyzing Crystalline Materials

Broadband Coherent Anti-Stokes Raman scattering (B-CARS) is an advanced Raman spectroscopy technique used to investigate the vibrational properties of materials. B-CARS combines the spectral sensitivity of spontaneous Raman scattering with the enhanced signal intensity of coherent Raman techniques. While B-CARS has been successfully applied in biomedicine for ultra-fast imaging of biological tissue, its potential in solid-state physics remains largely unexplored. This work delves into the challenges and adaptations necessary to apply B-CARS to crystalline materials and shows its potential as a powerful tool for high-speed, hyperspectral investigations.
The theoretical part of this work covers inelastic light-matter scattering fundamentals and the signal generation process of B-CARS, with special attention given to the so-called Non-Resonant Background (NRB). This sample-unspecific signal amplifies the B-CARS intensity but also distorts the shape and position of the measured spectral peaks.
A reliable NRB correction becomes crucial to retrieve precise spectral parameters containing information on the investigated material's crystallographic structure, defect density, and stress distribution.
The first results chapter presents a practical guideline for an optimized workflow of sample preparation, measurement procedure, and data analysis. The influences of sample surfaces, focus positioning, and polarization sensitivity are discussed. The successful NRB removal is achieved by adapting an algorithm initially designed for biomedical purposes.
The second chapter involves a transnational Round Robin investigating the same set of materials using different experimental setups. The influences of laser source, detection range, and transmission vs. epi detection are explored to optimize the experimental parameters.
This work showcases applications such as high-speed, hyperspectral imaging of ferroelectric domain walls in LiNbO3, demonstrating the potential of B-CARS in the cutting-edge field of domain wall engineering.
Additionally, imaging and polarization-sensitive measurements are shown for MoO3 flakes, paving the way for B-CARS investigations of 2D materials.
The final chapter presents advanced techniques, such as Three-Color CARS and Time-Delay CARS, applied to crystalline materials. Three-Color CARS is especially promising, as it enhances the signal intensity for low-frequency Raman modes, which are particularly interesting for solid-state physics compared to the usual large-shift modes investigated in biomedical research. Meanwhile, Time-Delay CARS is sensitive to relaxation processes of vibrational and NRB states, enabling experimental NRB removal and lifetime measurements. Additionally, a neural network-based NRB removal method is presented, eliminating the need for a prior NRB spectrum and offering rapid computation.
In summary, this work demonstrates the successful implementation of B-CARS for crystalline materials and provides a comprehensive guideline for the optimal experimental setup, workflow, and data processing. The application of B-CARS for imaging bulk crystalline materials, ferroelectric domain walls, and 2D structures shows promising possibilities for future research.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88803
Date03 January 2024
CreatorsHempel, Franz
ContributorsEng, Lukas M., Polli, Dario, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds