Bose-Einstein condensation is a collective quantum phenomenon where a macroscopic number of bosons occupies the lowest quantum state. For fixed temperature, bosons condense above a critical particle density. This phenomenon is a consequence of the Bose-Einstein distribution which dictates that excited states can host only a finite number of particles so that all remaining particles must form a condensate in the ground state. This reasoning applies to thermal equilibrium.
We investigate the fate of Bose condensation in nonisolated systems of noninteracting Bose gases driven far away from equilibrium. An example of such a driven-dissipative scenario is a Floquet system coupled to a heat bath. In these time-periodically driven systems, the particles are distributed among the Floquet states, which are the solutions of the Schrödinger equation that are time periodic up to a phase factor. The absence of the definition of a ground state in Floquet systems raises the question, whether Bose condensation survives far from equilibrium. We show that Bose condensation generalizes to an unambiguous selection of multiple states each acquiring a large occupation proportional to the total particle number. In contrast, the occupation numbers of nonselected states are bounded from above. We observe this phenomenon not only in various Floquet systems, i.a. time-periodically-driven quartic oscillators and tight-binding chains, but also in systems coupled to two baths where the population of one bath is inverted. In many cases, the occupation numbers of the selected states are macroscopic such that a fragmented condensation is formed according to the Penrose-Onsager criterion. We propose to control the heat conductivity through a chain by switching between a single and several selected states. Furthermore, the number of selected states is always odd except for fine-tuning. We provide a criterion, whether a single state (e.g., Bose condensation) or several states are selected.
In open systems, which exchange also particles with their environment, the nonequilibrium steady state is determined by the interplay between the particle-number-conserving intermode kinetics and particle-number-changing pumping and loss processes. For a large class of model systems, we find the following generic sequence when increasing the pumping: For small pumping, no state is selected. The first threshold, where the stimulated emission from the gain medium exceeds the loss in a state, is equivalent to the classical lasing threshold. Due to the competition between gain, loss and intermode kinetics, further transitions may occur. At each transition, a single state becomes either selected or deselected. Counterintuitively, at sufficiently strong pumping, the set of selected states is independent of the details of the gain and loss. Instead, it is solely determined by the intermode kinetics like in closed systems. This implies equilibrium condensation when the intermode kinetics is caused by a thermal environment. These findings agree well with observations of exciton-polariton gases in microcavities. In a collaboration with experimentalists, we observe and explain the pump-power-driven mode switching in a bimodal quantum-dot micropillar cavity. / Die Bose-Einstein-Kondensation ist ein Quantenphänomen, bei dem eine makroskopische Zahl von Bosonen den tiefsten Quantenzustand besetzt. Die Teilchen kondensieren, wenn bei konstanter Temperatur die Teilchendichte einen kritischen Wert übersteigt. Da die Besetzungen von angeregten Zuständen nach der Bose-Einstein-Statistik begrenzt sind, bilden alle verbleibenden Teilchen ein Kondensat im Grundzustand. Diese Argumentation ist im thermischen Gleichgewicht gültig.
In dieser Arbeit untersuchen wir, ob die Bose-Einstein-Kondensation in nicht wechselwirkenden Gasen fern des Gleichgewichtes überlebt. Diese Frage stellt sich beispielsweise in Floquet-Systemen, welche Energie mit einer thermischen Umgebung austauschen. In diesen zeitperiodisch getriebenen Systemen verteilen sich die Teilchen auf Floquet-Zustände, die bis auf einen Phasenfaktor zeitperiodischen Lösungen der Schrödinger-Gleichung. Die fehlende Definition eines Grundzustandes wirft die Frage nach der Existenz eines Bose-Kondensates auf. Wir finden eine Generalisierung der Bose-Kondensation in Form einer Selektion mehrerer Zustände. Die Besetzung in jedem selektierten Zustand ist proportional zur Gesamtteilchenzahl, während die Besetzung aller übrigen Zustände begrenzt bleibt. Wir beobachten diesen Effekt nicht nur in Floquet-Systemen, z.B. getriebenen quartischen Fallen, sondern auch in Systemen die an zwei Wärmebäder gekoppelt sind, wobei die Besetzung des einen invertiert ist. In vielen Fällen ist die Teilchenzahl in den selektierten Zuständen makroskopisch, sodass nach dem Penrose-Onsager Kriterium ein fragmentiertes Kondensat vorliegt. Die Wärmeleitfähigkeit des Systems kann durch den Wechsel zwischen einem und mehreren selektierten Zuständen kontrolliert werden. Die Anzahl der selektierten Zustände ist stets ungerade, außer im Falle von Feintuning. Wir beschreiben ein Kriterium, welches bestimmt, ob es nur einen selektierten Zustand (z.B. Bose-Kondensation) oder viele selektierte Zustände gibt.
In offenen Systemen, die auch Teilchen mit der Umgebung austauschen, ist der stationäre Nichtgleichgewichtszustand durch ein Wechselspiel zwischen der (Teilchenzahl-erhaltenden) Intermodenkinetik und den (Teilchenzahl-ändernden) Pump- und Verlustprozessen bestimmt. Für eine Vielzahl an Modellsystemen zeigen wir folgendes typisches Verhalten mit steigender Pumpleistung: Zunächst ist kein Zustand selektiert. Die erste Schwelle tritt auf, wenn der Gewinn den Verlust in einer Mode ausgleicht und entspricht der klassischen Laserschwelle. Bei stärkerem Pumpen treten weitere Übergänge auf, an denen je ein einzelner Zustand entweder selektiert oder deselektiert wird. Schließlich ist die Selektion überraschenderweise unabhängig von der Charakteristik des Pumpens und der Verlustprozesse. Die Selektion ist vielmehr ausschließlich durch die Intermodenkinetik bestimmt und entspricht damit den oben beschriebenen geschlossenen Systemen. Ist die Kinetik durch ein thermisches Bad hervorgerufen, tritt wie im Gleichgewicht eine Grundzustands-Kondensation auf. Unsere Theorie ist in Übereinstimmung mit experimentellen Beobachtungen von Exziton-Polariton-Gasen in Mikrokavitäten. In einer Kooperation mit experimentellen Gruppen konnten wir den Modenwechsel in einem bimodalen Quantenpunkt-Mikrolaser erklären.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30857 |
Date | 07 February 2018 |
Creators | Vorberg, Daniel |
Contributors | Ketzmerick, Roland, Eckardt, André, Diehl, Sebastian, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds