Untersucht wird das Cauchy Problem für degenerierte $p$-Evolutionsgleichungen. Dabei kann für Gleichungen höherer Ordnung in $D_t$, die nur von der Zeit abhängen, gezeigt werden, dass das Problem $H^\\infinity$ korrekt ist. Dafür werden gewisse Bedingungen an die Koeffizienten und deren erste Ableitungen gestellt. $H^\\infinity$ korrekt bedeutet dabei, dass die Anfangsdaten $u_0\\in H^s$, $u_1$ in einem dazugehörigen Sobolevraum und die Lösung bezüglich $x$ in $H^{s-s_0}$ liegen. Eine Notwendigkeit für die Bedingungen kann allerdings nicht gezeigt werden. Auch ist offen, ob der Regularitätsverlust wirklich eintritt. Später wird der Beweis erweitert um das Ergebniss für Koeffizienten zu zeigen, die in gewisser Weise auch vom Ort abhängen können. Im zweiten Teil der Dissertation geht es um Korrektheit für degenerierte $p$-Evolutionsgleichungen mit zeitabhängigen Koeffizienten und zweiter Ordnung in $D_t$. Gefordert werden Bedingungen an die Koeffizienten und die ersten beiden Ableitungen bezüglich der Zeit. Damit wird gezeigt, dass diese in Skalen von Sobolevräumen korrekt gestellt sind. Abschließend wird die Schärfe der Bedingungen und das tatsächliche Auftreten des Regularitätsverlustes in der Lösung bewiesen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:105-qucosa-99818 |
Date | 29 November 2012 |
Creators | Herrmann, Torsten |
Contributors | Technische Universität Bergakademie Freiberg, Mathematik und Informatik, Prof. Dr. rer. nat. habil. Michael Reissig, Prof. Dr. rer. nat. habil. Michael Reissig, Professore ordinario Massimo Cicognani |
Publisher | Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola" |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0018 seconds