We develop Hilbert-Kunz theory in a combinatorial setting namely for binoids. We show that the Hilbert-Kunz multiplicity for commutative, finitely generated, semipositive, cancellative and reduced binoids exists and is a rational number. This implies that the corresponding Hilbert-Kunz multiplicity for the binoid algebras does not depend on the characteristic.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2014121912975 |
Date | 19 December 2014 |
Creators | Batsukh, Bayarjargal |
Contributors | Prof. Dr. Holger Brenner, Prof. Dr. Tim Römer |
Source Sets | Universität Osnabrück |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/zip |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds