Return to search

Uniform L¹ behavior for the solution of a volterra equation with a parameter

The solution u=u(t)=u(t,λ) of

(E) u′(t)+λ∫<sub>0</sub><sup>t</sup>u(t-τ)(d+a(τ))dτ=0, u(0)=1, t ≥ 0, λ ≥ 1

where d ≥ 0, a is nonnegative, nonincreasing, convex and ∞ ≥ a(0+) > a(∞) = 0 is studied. In particular the question asked is: When is

(F) ∫<sub>0</sub><sup>∞</sup><sub>λ ≥ 1</sub><sup>sup</sup>|u′′(t, λ)/λ|dt < ∞?

We obtain two necessary conditions for (F). For (F) to hold, it is necessary that (-lnt)a(τ)∈L¹(0,1) and lim sup <sub>τ→∞</sub> (τθ(τ))²/φ(τ) <∞ where â(τ)=∫<sub>0</sub><sup>∞</sup>e<sup>-iτt</sup>a(t)dt=φ(τ)-iτθ(τ) (φ,θ both real).

We obtain sufficient conditions for (F) to hold which involve φ and θ (See Theorem 7). Then we look for direct conditions on a which imply (F). with the addition assumption -a′ is convex, we prove that (F) holds provided any one of the following hold:

(i) a(0+)<∞,

(ii) 0<lim inf <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ lim sup <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds < ∞,

(iii) lim <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0,

(iv) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0, a²(t)/-a′(t) is increasing for small t and a²(t) / -ta′(t)∈L¹(0,∈) for some ∈>0,

(v) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0 and τ(∫<sub>0</sub><sup>1/τ</sup> a(s)ds)³ / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ M < ∞ for δ ≤ τ < ∞ (some δ > 0).

Thus (F) holds for wide classes of examples. In particular, (F) holds when d+a(t) = t<sup>-p</sup>, 0 < p < 1; a(t)+d = -lnt (small t); a(t)+d = t⁻¹(-lnt)<sup>-q</sup>, q > 2 (small t). / Ph. D. / incomplete_metadata

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/49966
Date January 1985
CreatorsNoren, Richard Dennis
ContributorsMathematics, Hannsgen, Kenneth B., Wheeler, Robert, Prather, Carl, Herdman, Terry L., McCoy, Robert A.
PublisherVirginia Polytechnic Institute and State University
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation, Text
Formatiii, 69 leaves ;, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 13131395

Page generated in 0.027 seconds