In both, cell secretome analysis and bacteria evolution, controlled handling of particles with a few to sub-micrometers in size and media exchange are inevitable in order to investigate body fluid’s proteins or change the surrounding culture conditions for pivoted evolution. Typically, nanofiltration and ultra-centrifugation are employed which can lead to cell damage, need large sample volumes and have a high sample loss. Using contactless and label-free acoustic cell manipulation, disadvantages of other magnetic, dielectric or hydrodynamic methods can be avoided. Here, a novel design using acoustic forces for small particle trapping and media exchange is thoroughly numerically investigated including first- and second-order acoustic effects. The device comprises parallel aligned medium and air channels separated by a thin wall. Particle trapping occurs at this thin wall. The medium channel dimensions (height and width) and thin wall thickness are optimized with respect to trapping forces. Thinnest walls are preferable and an aspect ratio of 0.8. First preliminary experimental variation with polystyrene particles showed good agreement with the simulations. Thereby the particle trapping efficiency is evaluated under quiescent flow conditions. For particle trapping, a device with a channel height of 290μm and an aspect ratio of 0.7 is superior which supports the numerical results. Finally, medium exchange of E. coli bacteria is demonstrated with best results for a device with a channel height of 450μm and an aspect ratio of 0.8 showing that 13.4% of the initial bacteria were released after medium exchange which can be used for further processing.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-285985 |
Date | January 2020 |
Creators | Leuthner, Moritz |
Publisher | KTH, Skolan för kemi, bioteknologi och hälsa (CBH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2020:234 |
Page generated in 0.0031 seconds