• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Microfluidic, Extensional Flow Device for Manipulating Soft Particles

Motagamwala, Ali Hussain 05 December 2013 (has links)
A computer-controlled microfluidic extensional flow device is developed for trapping and manipulating micron-sized hard and soft particles. The extensional flow is generated in a diamond-shaped cross-slot that has each corner connected to a pressure-controlled liquid reservoir. By employing an imaging-based control algorithm, a particle can be made to move to an arbitrary position within the slot by adjusting the reservoir pressures and hence the fluid flow rates into/out of the slot. Thus, a soft particle can be trapped indefinitely at a point within the slot, and a known hydrodynamic force can be applied to study the dynamics of stretching and breakup of the particle. Alternatively, adhesion or coalescence dynamics of soft particles may be investigated by effecting a controlled collision between two particles. The device is validated by measuring the low interfacial tension of a compatibilized oil-water interface.
2

A Microfluidic, Extensional Flow Device for Manipulating Soft Particles

Motagamwala, Ali Hussain 05 December 2013 (has links)
A computer-controlled microfluidic extensional flow device is developed for trapping and manipulating micron-sized hard and soft particles. The extensional flow is generated in a diamond-shaped cross-slot that has each corner connected to a pressure-controlled liquid reservoir. By employing an imaging-based control algorithm, a particle can be made to move to an arbitrary position within the slot by adjusting the reservoir pressures and hence the fluid flow rates into/out of the slot. Thus, a soft particle can be trapped indefinitely at a point within the slot, and a known hydrodynamic force can be applied to study the dynamics of stretching and breakup of the particle. Alternatively, adhesion or coalescence dynamics of soft particles may be investigated by effecting a controlled collision between two particles. The device is validated by measuring the low interfacial tension of a compatibilized oil-water interface.
3

Patterned Magnetic Structures for Micro-/Nanoparticle and Cell Manipulation

Vieira, Gregory Butler 19 December 2012 (has links)
No description available.
4

Improving cell secretome analysis and bacteria evolution by means of acoustophoresis / Förbättrad analys av cellsekret och bakterieutveckling med hjälp av akustofores

Leuthner, Moritz January 2020 (has links)
In both, cell secretome analysis and bacteria evolution, controlled handling of particles with a few to sub-micrometers in size and media exchange are inevitable in order to investigate body fluid’s proteins or change the surrounding culture conditions for pivoted evolution. Typically, nanofiltration and ultra-centrifugation are employed which can lead to cell damage, need large sample volumes and have a high sample loss. Using contactless and label-free acoustic cell manipulation, disadvantages of other magnetic, dielectric or hydrodynamic methods can be avoided. Here, a novel design using acoustic forces for small particle trapping and media exchange is thoroughly numerically investigated including first- and second-order acoustic effects. The device comprises parallel aligned medium and air channels separated by a thin wall. Particle trapping occurs at this thin wall. The medium channel dimensions (height and width) and thin wall thickness are optimized with respect to trapping forces. Thinnest walls are preferable and an aspect ratio of 0.8. First preliminary experimental variation with polystyrene particles showed good agreement with the simulations. Thereby the particle trapping efficiency is evaluated under quiescent flow conditions. For particle trapping, a device with a channel height of 290μm and an aspect ratio of 0.7 is superior which supports the numerical results. Finally, medium exchange of E. coli bacteria is demonstrated with best results for a device with a channel height of 450μm and an aspect ratio of 0.8 showing that 13.4% of the initial bacteria were released after medium exchange which can be used for further processing.

Page generated in 0.0947 seconds