Return to search

Lagrangian invariant subspaces of Hamiltonian matrices

The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and sufficient conditions are given in terms of the Jordan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases existence and uniqueness results for Hermitian solutions of continuous time algebraic Riccati equations.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200501133
Date14 September 2005
CreatorsMehrmann, Volker, Xu, Hongguo
ContributorsTU Chemnitz, SFB 393
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, application/postscript, text/plain, application/zip
SourcePreprintreihe des Chemnitzer SFB 393, 98-25

Page generated in 0.0096 seconds