L'identification des systèmes dynamiques non linéaires à partir d'un ensemble de données entrée/sortie est d'une importance fondamentale pour les applications pratiques puisque beaucoup de systèmes physiques possèdent des caractéristiques non linéaires. La structure du modèle de Volterra peut être utilisée pour représenter une classe générale de systèmes non linéaires. Cependant, l'usage pratique d'une telle représentation est souvent limité à cause du grand nombre de paramètres associé à une telle structure. Pour pallier à cet inconvénient, plusieurs solutions sont proposées dans cette thèse. La première utilise des développements en série des différents noyaux sur des bases de fonctions orthogonales. La deuxième est basée sur l'utilisation de techniques faisant appel à des décompositions d'ordre réduit des tenseurs relatifs aux noyaux d'ordre supérieur ou égal à trois. Diverses bases de fonctions (Laguerre, Kautz et Bases Orthogonales Généralisées (BOG)) sont tout d'abord étudiées en vue de leur utilisation pour la modélisation des systèmes linéaires puis pour la représentation des noyaux de modèle de Volterra. Le problème d'identification comporte plusieurs volets : détermination des pôles caractéristiques des bases de fonctions orthogonales, de l'ordre des développements des différents noyaux, des coefficients de Fourier du développement et de l'incertitude relative à ces coefficients. Une représentation d'état associée à un développement sur une base de fonctions orthogonales généralisées est développée puis utilisée pour la construction de prédicteurs de la sortie du système ainsi modélisé. Ensuite, plusieurs décompositions tensorielles sont étudiées. La décomposition PARAFAC est plus particulièrement considérée. Des modèles de Volterra à complexité réduite inspirés de cette technique sont proposés. En considérant le noyau quadratique de Volterra comme une matrice et les autres noyaux comme des tenseurs d'ordres supérieurs à deux, nous utilisons une décomposition à l'aide des valeurs singulières (SVD) pour le noyau quadratique et la décomposition PARAFAC pour les noyaux d'ordres supérieurs à deux afin de construire le modèle réduit de Volterra appelé SVD-PARAFAC-Volterra. Un nouvel algorithme appelé ARLS (Alternating Recursive Least Squares) est présenté. Cet algorithme essentiellement basé sur la technique RLS appliquée d'une manière alternée estime les paramètres de tels modèles de Volterra. Enfin, de nouvelles méthodes d'identification robuste dites à erreur bornée sont présentées. Elles sont utilisées pour l'identification de modèles linéaires issus des BOG, travail qui vise à étendre au cas des systèmes non linéaires incertains des résultats obtenus récemment pour des systèmes linéaires incertains. Parmi les techniques d'identification à erreur bornée présentées, l'approche polytopique est plus particulièrement considérée. Cette approche nous permet d'estimer les intervalles d'incertitude des coefficients de Fourier du développement sur les différentes bases orthogonales étudiées. Ces mêmes méthodes d'identification sont utilisées aussi afin d'identifier les intervalles d'incertitude des paramètres du modèle SVD-PARAFAC-Volterra. Les méthodes proposées permettent de réaliser une importante réduction de complexité numérique et un gain en temps de calcul considérables.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00090557 |
Date | 01 March 2005 |
Creators | Khouaja, Anis |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds